Searching for efficiency : 99 results found | RSS Feed for this search

1 2 3 4

15.024 Applied Economics for Managers (MIT) 15.024 Applied Economics for Managers (MIT)

Description

The fact of scarcity forces individuals, firms, and societies to choose among alternative uses – or allocations – of its limited resources. Accordingly, the first part of this summer course seeks to understand how economists model the choice process of individual consumers and firms, and how markets work to coordinate these choices. It also examines how well markets perform this function using the economist's criterion of market efficiency. Overall, this course focuses on microeconomics, with some topics from macroeconomics and international trade. It emphasizes the integration of theory, data, and judgment in the analysis of corporate decisions and public policy, and in the assessment of changing U.S. and international business environments. The fact of scarcity forces individuals, firms, and societies to choose among alternative uses – or allocations – of its limited resources. Accordingly, the first part of this summer course seeks to understand how economists model the choice process of individual consumers and firms, and how markets work to coordinate these choices. It also examines how well markets perform this function using the economist's criterion of market efficiency. Overall, this course focuses on microeconomics, with some topics from macroeconomics and international trade. It emphasizes the integration of theory, data, and judgment in the analysis of corporate decisions and public policy, and in the assessment of changing U.S. and international business environments.

Subjects

applied economics | applied economics | resource scarcity | resource scarcity | allocate limited resources | allocate limited resources | business choices | business choices | modeling consumer choices | modeling consumer choices | market efficiency | market efficiency | microeconomics | microeconomics | efficiency | efficiency | supply | supply | demand | demand | consumer theory | consumer theory | producer theory | producer theory | monopoly | monopoly | imperfect competition | imperfect competition | pricing | pricing | public goods | public goods | externalities | externalities | information uncertainty | information uncertainty | group decision making | group decision making | organizational architecture | organizational architecture | international trade | international trade | equity | equity | income distribution | income distribution | economic rewards | economic rewards | managerial economics | managerial economics | corporate finance theory | corporate finance theory | network economy | network economy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.433 Investments (MIT) 15.433 Investments (MIT)

Description

The focus of this course is on financial theory and empirical evidence for making investment decisions. Topics include: portfolio theory; equilibrium models of security prices (including the capital asset pricing model and the arbitrage pricing theory); the empirical behavior of security prices; market efficiency; performance evaluation; and behavioral finance. The focus of this course is on financial theory and empirical evidence for making investment decisions. Topics include: portfolio theory; equilibrium models of security prices (including the capital asset pricing model and the arbitrage pricing theory); the empirical behavior of security prices; market efficiency; performance evaluation; and behavioral finance.

Subjects

Financial theory | Financial theory | empirical evidence | empirical evidence | investment decisions | investment decisions | portfolio theory | portfolio theory | equilibrium models of security prices | equilibrium models of security prices | capital asset pricing model | capital asset pricing model | arbitrage pricing theory | arbitrage pricing theory | empirical behavior of security prices | empirical behavior of security prices | market efficiency | performance evaluation | market efficiency | performance evaluation | market efficiency | market efficiency | performance evaluation | performance evaluation | behavioral finance | behavioral finance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.082J Network Optimization (MIT) 15.082J Network Optimization (MIT)

Description

15.082J/6.855J is an H-level graduate subject in the theory and practice of network flows and its extensions. Network flow problems form a subclass of linear programming problems with applications to transportation, logistics, manufacturing, computer science, project management, finance as well as a number of other domains. This subject will survey some of the applications of network flows and focus on key special cases of network flow problems including the following: the shortest path problem, the maximum flow problem, the minimum cost flow problem, and the multi-commodity flow problem. 15.082J/6.855J is an H-level graduate subject in the theory and practice of network flows and its extensions. Network flow problems form a subclass of linear programming problems with applications to transportation, logistics, manufacturing, computer science, project management, finance as well as a number of other domains. This subject will survey some of the applications of network flows and focus on key special cases of network flow problems including the following: the shortest path problem, the maximum flow problem, the minimum cost flow problem, and the multi-commodity flow problem.

Subjects

network flows | network flows | extensions | extensions | network flow problems | network flow problems | transportation | transportation | logistics | logistics | manufacturing | manufacturing | computer science | computer science | project management | project management | finance | finance | the shortest path problem | the shortest path problem | the maximum flow problem | the maximum flow problem | the minimum cost flow problem | the minimum cost flow problem | the multi-commodity flow problem | the multi-commodity flow problem | communication | communication | systems | systems | applications | applications | efficiency | efficiency | algorithms | algorithms | traffic | traffic | equilibrium | equilibrium | design | design | mplementation | mplementation | linear programming | linear programming | implementation | implementation | computer | computer | science | science | linear | linear | programming | programming | network | network | flow | flow | problems | problems | project | project | management | management | maximum | maximum | minimum | minimum | cost | cost | multi-commodity | multi-commodity | shortest | shortest | path | path | 15.082 | 15.082 | 6.855 | 6.855

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.172 Performance Engineering of Software Systems (MIT) 6.172 Performance Engineering of Software Systems (MIT)

Description

Modern computing platforms provide unprecedented amounts of raw computational power. But significant complexity comes along with this power, to the point that making useful computations exploit even a fraction of the potential of the computing platform is a substantial challenge. Indeed, obtaining good performance requires a comprehensive understanding of all layers of the underlying platform, deep insight into the computation at hand, and the ingenuity and creativity required to obtain an effective mapping of the computation onto the machine. The reward for mastering these sophisticated and challenging topics is the ability to make computations that can process large amount of data orders of magnitude more quickly and efficiently and to obtain results that are unavailable with standard pr Modern computing platforms provide unprecedented amounts of raw computational power. But significant complexity comes along with this power, to the point that making useful computations exploit even a fraction of the potential of the computing platform is a substantial challenge. Indeed, obtaining good performance requires a comprehensive understanding of all layers of the underlying platform, deep insight into the computation at hand, and the ingenuity and creativity required to obtain an effective mapping of the computation onto the machine. The reward for mastering these sophisticated and challenging topics is the ability to make computations that can process large amount of data orders of magnitude more quickly and efficiently and to obtain results that are unavailable with standard pr

Subjects

performance engineering | performance engineering | parallelism | parallelism | computational power | computational power | complexity | complexity | computation | computation | efficiency | efficiency | high performance | high performance | software system | software system | performance analysis | performance analysis | algorithms | algorithms | instruction level optimization | instruction level optimization | cache | cache | memory | memory | parallel programming | parallel programming | distributed systems | distributed systems | algorithmic design | algorithmic design | profile | profile | multithreaded | multithreaded | cilk | cilk | cilk arts | cilk arts | ray tracer | ray tracer | render | render

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.391J Sustainable Energy (MIT) 10.391J Sustainable Energy (MIT)

Description

The assessment of current and potential future energy systems is covered in this course and includes topics on resources, extraction, conversion, and end-use, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. Detailed information on the course textbook can be found here: Tester, J. W., E. M. Drake, M. W. Golay, M. J. Driscoll, and W. A. Peters. Sustainable Energy - Choosing Among Options. Cambridge, MA: MIT Press, 2005. ISBN: 0262201534. The assessment of current and potential future energy systems is covered in this course and includes topics on resources, extraction, conversion, and end-use, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. Detailed information on the course textbook can be found here: Tester, J. W., E. M. Drake, M. W. Golay, M. J. Driscoll, and W. A. Peters. Sustainable Energy - Choosing Among Options. Cambridge, MA: MIT Press, 2005. ISBN: 0262201534.

Subjects

renewable energy | renewable energy | conservation | conservation | alternative power | alternative power | thermodynamics | thermodynamics | efficiency | efficiency | system analysis | system analysis | greenhouse | greenhouse | consumption | consumption | fuel | fuel | resource allocation | resource allocation | sustainable energy | sustainable energy | energy use | energy use | energy transfer | energy transfer | conversion | conversion | clean technologies | clean technologies | nuclear energy | nuclear energy | electrochemical energy | electrochemical energy | biomass energy | biomass energy | wind power | wind power | fusion energy | fusion energy | fossil energy | fossil energy | solar thermal energy | solar thermal energy | energy supply | energy supply | energy demand | energy demand | 10.391 | 10.391 | 1.818 | 1.818 | 2.65 | 2.65 | 3.564 | 3.564 | 11.371 | 11.371 | 22.811ESD.166J | 22.811ESD.166J | ESD.166 | ESD.166

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.661 Labor Economics I (MIT) 14.661 Labor Economics I (MIT)

Description

Neoclassical analysis of the labor market and its institutions. A systematic development of the theory of labor supply, labor demand, and human capital. Topics discussed also include wage and employment determination, turnover, search, immigration, unemployment, equalizing differences, and institutions in the labor market. There is particular emphasis on the interaction of theoretical and empirical modeling and the development of independent research interests. Neoclassical analysis of the labor market and its institutions. A systematic development of the theory of labor supply, labor demand, and human capital. Topics discussed also include wage and employment determination, turnover, search, immigration, unemployment, equalizing differences, and institutions in the labor market. There is particular emphasis on the interaction of theoretical and empirical modeling and the development of independent research interests.

Subjects

labor economics | public policy | schooling | learning | matching | experience | wages | minimum wage | college | investment | training | firms | corporations | labor | unions | panel data | neoclassical model | turnover models | turnover | economics | labor economics | public policy | schooling | learning | matching | experience | wages | minimum wage | college | investment | training | firms | corporations | labor | unions | panel data | neoclassical model | turnover models | turnover | economics | labor | labor | market | market | statistics | statistics | theory | theory | neoclassical | neoclassical | supply | supply | model | model | life-cycle | life-cycle | demand | demand | wages | wages | immigration | immigration | human capital | human capital | econometrics | econometrics | liquidity | liquidity | constraints | constraints | mobility | mobility | incentives | incentives | organization | organization | moral hazard | moral hazard | insurance | insurance | investments | investments | efficiency | efficiency | unemployment | unemployment | search | search | jobs | jobs | training | training | capital | capital | firm | firm | technology | technology | skills | skills | risk | risk | signaling | signaling | discrimination | discrimination | self-selection | self-selection | learning | learning | natives | natives

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.921 Information Technology in the Health Care System of the Future (MIT) HST.921 Information Technology in the Health Care System of the Future (MIT)

Description

This course will show how information technologies (IT) shape and redefine the health care marketplace. Students will learn how IT enhances medical care through: 1) improved economies of scale, 2) greater technical efficiencies in the delivery of care, 3) advanced tools for patient education and self-care, 4) network-integrated decision support tools for clinicians, and 5) opportunities for e-health delivery over the internet. Students will work in interdisciplinary teams to design an innovative solution to a current or future health care problem. Students' proposed solutions will draw upon understanding of tools and principles acquired and will be presented as an application design during the final days of the course. Adjunct Faculty Mirena Bagur Sherri Dorfman Paul Heinzelman Gary H This course will show how information technologies (IT) shape and redefine the health care marketplace. Students will learn how IT enhances medical care through: 1) improved economies of scale, 2) greater technical efficiencies in the delivery of care, 3) advanced tools for patient education and self-care, 4) network-integrated decision support tools for clinicians, and 5) opportunities for e-health delivery over the internet. Students will work in interdisciplinary teams to design an innovative solution to a current or future health care problem. Students' proposed solutions will draw upon understanding of tools and principles acquired and will be presented as an application design during the final days of the course. Adjunct Faculty Mirena Bagur Sherri Dorfman Paul Heinzelman Gary H

Subjects

information technology | information technology | health care system | health care system | economy of scale | economy of scale | technical efficiency | technical efficiency | patient education | patient education | self-care | self-care | network integration | network integration | decision support tool | decision support tool | internet | internet | web | web | disease managment | disease managment | health economics | health economics | clinical effectiveness | clinical effectiveness | trials design | trials design | software | software

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.61 Internal Combustion Engines (MIT) 2.61 Internal Combustion Engines (MIT)

Description

This course elaborates on the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact, study of fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, relevant to engine power, efficiency, and emissions, examination of design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. The project section details the Engine Laboratory project. We have aimed this course for graduate and senior undergraduate students. This course elaborates on the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact, study of fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, relevant to engine power, efficiency, and emissions, examination of design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. The project section details the Engine Laboratory project. We have aimed this course for graduate and senior undergraduate students.

Subjects

internal combustion engines | internal combustion engines | engine operation | engine operation | engine fuel requirements | engine fuel requirements | environmental impact | environmental impact | fluid flow | fluid flow | thermodynamics | thermodynamics | combustion | combustion | heat transfer and friction phenomena | heat transfer and friction phenomena | fuel properties | fuel properties | power | power | efficiency | efficiency | emissions | emissions | spark-ignition | spark-ignition | diesel | diesel | stratified-charge | stratified-charge | mixed-cycle engine. | mixed-cycle engine.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.452 Economic Growth (MIT) 14.452 Economic Growth (MIT)

Description

This half semester class presents an introduction to macroeconomic modeling, focusing on the theory of economic growth and some of its applications. It will introduce a number of models of non-stochastic and stochastic macroeconomic equilibrium. It will use these models to shed light both on the process of economic growth at the world level and on sources of income and growth differences across countries. This half semester class presents an introduction to macroeconomic modeling, focusing on the theory of economic growth and some of its applications. It will introduce a number of models of non-stochastic and stochastic macroeconomic equilibrium. It will use these models to shed light both on the process of economic growth at the world level and on sources of income and growth differences across countries.

Subjects

economic growth | economic growth | development | development | modern | modern | world income distribution | world income distribution | Solow growth model | Solow growth model | income differences | income differences | neoclassical growth | neoclassical growth | optimal and competitive allocations | optimal and competitive allocations | welfare theorems | welfare theorems | overlapping generations | overlapping generations | dynamic efficiency | dynamic efficiency | growth under uncertainty | growth under uncertainty | incomplete markets | incomplete markets | neoclassical endogenous growth | neoclassical endogenous growth | capital accumulation | capital accumulation | externalities | externalities | human capital | human capital | endogenous growth | endogenous growth | expanding input varieties | expanding input varieties | Schumpeterian models | Schumpeterian models | endogenous skill-bias technological change | endogenous skill-bias technological change | endogenous labor-augmenting technological change | endogenous labor-augmenting technological change | interdependences | interdependences | technology diffusion | technology diffusion | open economy | open economy | trade | trade

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.928 Strategic Management and Consulting Proseminar: Theoretical Foundations (MIT) 15.928 Strategic Management and Consulting Proseminar: Theoretical Foundations (MIT)

Description

15.928, Proseminar in Strategic Management and Consulting: Theoretical Foundations, provides students with strategic frameworks and a broad exposure to business matters that affect strategic management and the consulting industry. To fulfill that objective, the Proseminar invites distinguished executives from businesses and consulting firms.Fifty top executives from the U.S. and abroad were interviewed to identify the major issues that they were facing in today's world. From this survey six themes emerged as the leading subjects of strategic importance. We have organized the Proseminar accordingly. These themes are:Theme 1. Restoring Credibility and Winning Stakeholders Trust.Theme 2. Focus on Short-Term Efficiency - Cost Containment and Implementation.Theme 3. Largest Destruction of Shar 15.928, Proseminar in Strategic Management and Consulting: Theoretical Foundations, provides students with strategic frameworks and a broad exposure to business matters that affect strategic management and the consulting industry. To fulfill that objective, the Proseminar invites distinguished executives from businesses and consulting firms.Fifty top executives from the U.S. and abroad were interviewed to identify the major issues that they were facing in today's world. From this survey six themes emerged as the leading subjects of strategic importance. We have organized the Proseminar accordingly. These themes are:Theme 1. Restoring Credibility and Winning Stakeholders Trust.Theme 2. Focus on Short-Term Efficiency - Cost Containment and Implementation.Theme 3. Largest Destruction of Shar

Subjects

strategic management | strategic management | oonsulting | oonsulting | consulting | consulting | consulting industry | consulting industry | executives | executives | efficiency | efficiency | organization | organization | structure | structure

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.921 Information Technology in the Health Care System of the Future (MIT) HST.921 Information Technology in the Health Care System of the Future (MIT)

Description

The healthcare system in the US has been in the midst of a rapid transition in response to changing trends and patterns of care. The growing emphasis on evidence-based medical practice, continuous quality improvement, clinical and cost-effectiveness, and risk management have led to a sea change in medical practice that has been stressful for clinicians, patients, and administrators. As care becomes more tightly managed, it becomes a challenge for clinicians, administrators, and patients to balance time, money, resources, and clinical outcomes. Can emerging technologies help solve these complex problems? How has the demise of the dot.com industry effected these trends and slowed the proliferation of potential solutions?This innovative, trans-faculty course will teach the student how informa The healthcare system in the US has been in the midst of a rapid transition in response to changing trends and patterns of care. The growing emphasis on evidence-based medical practice, continuous quality improvement, clinical and cost-effectiveness, and risk management have led to a sea change in medical practice that has been stressful for clinicians, patients, and administrators. As care becomes more tightly managed, it becomes a challenge for clinicians, administrators, and patients to balance time, money, resources, and clinical outcomes. Can emerging technologies help solve these complex problems? How has the demise of the dot.com industry effected these trends and slowed the proliferation of potential solutions?This innovative, trans-faculty course will teach the student how informa

Subjects

information technology | information technology | health care system | health care system | economy of scale | economy of scale | technical efficiency | technical efficiency | patient education | patient education | self-care | self-care | network integration | network integration | decision support tool | decision support tool | internet | internet | web | web | disease managment | disease managment | health economics | health economics | clinical effectiveness | clinical effectiveness | trials design | trials design | software | software

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.902 Strategic Management I (MIT) 15.902 Strategic Management I (MIT)

Description

This course focuses on some of the important current issues in strategic management. It will concentrate on modern analytical approaches and on enduring successful strategic practices. It is consciously designed with a technological and global outlook since this orientation in many ways highlights the significant emerging trends in strategic management. The course is intended to provide the students with a pragmatic approach that will guide the formulation and implementation of corporate, business, and functional strategies. This course focuses on some of the important current issues in strategic management. It will concentrate on modern analytical approaches and on enduring successful strategic practices. It is consciously designed with a technological and global outlook since this orientation in many ways highlights the significant emerging trends in strategic management. The course is intended to provide the students with a pragmatic approach that will guide the formulation and implementation of corporate, business, and functional strategies.

Subjects

strategic management | strategic management | delta project | delta project | corporate | corporate | business | business | functional strategies | functional strategies | business management | business management | business processes | business processes | efficiency | efficiency | business model | business model | strategic planning | strategic planning

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.487 Urban Public Finance in Developing Countries (MIT) 11.487 Urban Public Finance in Developing Countries (MIT)

Description

This readings-based course analyzes the structure and operation of government systems in developing countries, with particular emphasis on regional and local governments. Major topics include: the role of decentralization in national economic reform programs; the potential impact of decentralized governments on local economic development; determination of optimal arrangements for sharing fiscal responsibilities among levels of government; evaluation of local revenue and expenditure decisions; and assessment of prospects and options for intergovernmental fiscal reform. Emphasis is on basic economic concerns, with consideration given to political, institutional, and cultural factors. This readings-based course analyzes the structure and operation of government systems in developing countries, with particular emphasis on regional and local governments. Major topics include: the role of decentralization in national economic reform programs; the potential impact of decentralized governments on local economic development; determination of optimal arrangements for sharing fiscal responsibilities among levels of government; evaluation of local revenue and expenditure decisions; and assessment of prospects and options for intergovernmental fiscal reform. Emphasis is on basic economic concerns, with consideration given to political, institutional, and cultural factors.

Subjects

basic economic concerns | basic economic concerns | political | political | institutional | institutional | and cultural factors | and cultural factors | decentralization in national economic reform programs | decentralization in national economic reform programs | the potential impact of decentralized governments on local economic development | the potential impact of decentralized governments on local economic development | determination of optimal arrangements for sharing fiscal responsibilities among levels of government | determination of optimal arrangements for sharing fiscal responsibilities among levels of government | evaluation of local revenue and expenditure decisions | evaluation of local revenue and expenditure decisions | assessment of prospects and options for intergovernmental fiscal reform | assessment of prospects and options for intergovernmental fiscal reform | political | institutional | and cultural factors | political | institutional | and cultural factors | developing countries | developing countries | public goods | public goods | externalities | externalities | economic development | economic development | balance sheets | balance sheets | fiscal gap | fiscal gap | revenues | revenues | expenditures | expenditures | budget deficits | budget deficits | inflation | inflation | public finance theory | public finance theory | efficiency | efficiency | optimal taxation | optimal taxation | optimal user fees | optimal user fees | basic microeconomic theory | basic microeconomic theory | equity | equity | incidence | incidence | general equilibrium model | general equilibrium model | property taxation | property taxation | tax reform | tax reform | intergovernmental fiscal relations | intergovernmental fiscal relations | fiscal federalism | fiscal federalism | decentralization | decentralization | transfers | transfers | international lending agencies | international lending agencies | programming assistance | programming assistance | conditionalities | conditionalities | public debt | public debt | structural adjustment | structural adjustment | private sector participation | private sector participation | microfinance | microfinance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.685 Electric Machines (MIT) 6.685 Electric Machines (MIT)

Description

6.685 explores concepts in electromechanics, using electric machinery as examples. It teaches an understanding of principles and analysis of electromechanical systems. By the end of the course, students are capable of doing electromechanical design of the major classes of rotating and linear electric machines, and have an understanding of the principles of the energy conversion parts of Mechatronics. In addition to design, students learn how to estimate the dynamic parameters of electric machines and understand what the implications of those parameters are on the performance of systems incorporating those machines. 6.685 explores concepts in electromechanics, using electric machinery as examples. It teaches an understanding of principles and analysis of electromechanical systems. By the end of the course, students are capable of doing electromechanical design of the major classes of rotating and linear electric machines, and have an understanding of the principles of the energy conversion parts of Mechatronics. In addition to design, students learn how to estimate the dynamic parameters of electric machines and understand what the implications of those parameters are on the performance of systems incorporating those machines.

Subjects

electric | electric | machine | machine | transformers | transformers | electromechanical | electromechanical | transducers | transducers | rotating | rotating | linear electric machines | linear electric machines | lumped parameter | lumped parameter | dc | dc | induction | induction | synchronous | synchronous | energy conversion | energy conversion | electromechanics | electromechanics | Mechatronics | Mechatronics | Electromechanical transducers | Electromechanical transducers | rotating electric machines | rotating electric machines | lumped-parameter elecromechanics | lumped-parameter elecromechanics | interaction electromechanics | interaction electromechanics | device characteristics | device characteristics | energy conversion density | energy conversion density | efficiency | efficiency | system interaction characteristics | system interaction characteristics | regulation | regulation | stability | stability | controllability | controllability | response | response | electric machines | electric machines | drive systems | drive systems | electric machinery | electric machinery | electromechanical systems | electromechanical systems | design | design | dynamic parameters | dynamic parameters | phenomena | phenomena | interactions | interactions | classical mechanics | classical mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.391J Sustainable Energy (MIT) 10.391J Sustainable Energy (MIT)

Description

Assessment of current and potential future energy systems, covering extraction, conversion, and end-use, with emphasis on meeting regional and global energy needs in the 21st century in a more sustainable manner. Different renewable and conventional energy technologies will be presented and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. Open to graduate students and upper-class undergraduates. Assessment of current and potential future energy systems, covering extraction, conversion, and end-use, with emphasis on meeting regional and global energy needs in the 21st century in a more sustainable manner. Different renewable and conventional energy technologies will be presented and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. Open to graduate students and upper-class undergraduates.

Subjects

renewable energy | renewable energy | conservation | conservation | alternative power | alternative power | thermodynamics | thermodynamics | efficiency | efficiency | system analysis | system analysis | greenhouse | greenhouse | consumption | consumption | fuel | fuel | resource allocation | resource allocation | 10.391 | 10.391 | 1.818 | 1.818 | 2.65 | 2.65 | 3.564 | 3.564 | 11.371 | 11.371 | 22.811 | 22.811 | ESD.166 | ESD.166

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.00SC Introduction to Computer Science and Programming (MIT) 6.00SC Introduction to Computer Science and Programming (MIT)

Description

Includes audio/video content: AV lectures. This subject is aimed at students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems. It also aims to help students, regardless of their major, to feel justifiably confident of their ability to write small programs that allow them to accomplish useful goals. The class will use the Python programming language. Includes audio/video content: AV lectures. This subject is aimed at students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems. It also aims to help students, regardless of their major, to feel justifiably confident of their ability to write small programs that allow them to accomplish useful goals. The class will use the Python programming language.

Subjects

Python programming | Python programming | algorithms | algorithms | dynamic programming | dynamic programming | object-oriented programming | object-oriented programming | debugging | debugging | problem solving | problem solving | recursion | recursion | iteration | iteration | search algorithms | search algorithms | program efficiency | program efficiency | order of growth | order of growth | memoization | memoization | hashing | hashing | object classes | object classes | inheritance | inheritance | Monte Carlo simulation | Monte Carlo simulation | curve fitting | curve fitting | optimization | optimization | clustering | clustering | queuing networks | queuing networks | data sampling | data sampling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.60 Fundamentals of Advanced Energy Conversion (MIT) 2.60 Fundamentals of Advanced Energy Conversion (MIT)

Description

This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization

Subjects

Thermodynamics | Thermodynamics | chemistry | chemistry | flow | flow | transport processes | transport processes | energy systems | energy systems | energy conversion in thermomechanical | thermochemical | electrochemical | energy conversion in thermomechanical | thermochemical | electrochemical | and photoelectric processes | and photoelectric processes | power and transportation systems | power and transportation systems | efficiency | efficiency | environmental impact | environmental impact | performance | performance | fossil fuels | fossil fuels | hydrogen resources | hydrogen resources | nuclear resources | nuclear resources | renewable resources | renewable resources | fuel reforming | fuel reforming | hydrogen and synthetic fuel production | hydrogen and synthetic fuel production | fuel cells and batteries | fuel cells and batteries | combustion | combustion | hybrids | hybrids | catalysis | catalysis | supercritical and combined cycles | supercritical and combined cycles | photovoltaics | photovoltaics | energy storage and transmission | energy storage and transmission | Optimal source utilization | Optimal source utilization | fuel-life cycle analysis. | fuel-life cycle analysis. | thermochemical | electrochemical | and photoelectric processes | thermochemical | electrochemical | and photoelectric processes | 2.62 | 2.62 | 10.392 | 10.392 | 22.40 | 22.40

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.61 Internal Combustion Engines (MIT) 2.61 Internal Combustion Engines (MIT)

Description

This course studies the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Topics include fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, with reference to engine power, efficiency, and emissions. Students examine the design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. Class includes lab project in the Engine Laboratory. This course studies the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Topics include fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, with reference to engine power, efficiency, and emissions. Students examine the design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. Class includes lab project in the Engine Laboratory.

Subjects

internal combustion engines | internal combustion engines | engine operation | engine operation | engine fuel requirements | engine fuel requirements | environmental impact | environmental impact | fluid flow | thermodynamics | combustion | heat transfer and friction phenomena | fluid flow | thermodynamics | combustion | heat transfer and friction phenomena | fuel properties | fuel properties | power | power | efficiency | efficiency | emissions | emissions | spark-ignition | spark-ignition | diesel | diesel | stratified-charge | stratified-charge | mixed-cycle engine | mixed-cycle engine | full lecture notes | full lecture notes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Environmental Issues in Materials Selection (MIT) Environmental Issues in Materials Selection (MIT)

Description

Choice of material has implications throughout the life-cycle of a product, influencing many aspects of economic and environmental performance. This course will provide a survey of methods for evaluating those implications. Lectures will cover topics in material choice concepts, fundamentals of engineering economics, manufacturing economics modeling methods, and life-cycle environmental evaluation. Choice of material has implications throughout the life-cycle of a product, influencing many aspects of economic and environmental performance. This course will provide a survey of methods for evaluating those implications. Lectures will cover topics in material choice concepts, fundamentals of engineering economics, manufacturing economics modeling methods, and life-cycle environmental evaluation.

Subjects

cost | cost | value | value | cash flow | cash flow | discount | discount | life-cycle | life-cycle | engineering economics | engineering economics | manufacturing economics | manufacturing economics | LCA | LCA | life-cycle assessment | life-cycle assessment | PCBM | PCBM | process-based cost modeling | process-based cost modeling | cost model | cost model | environmental impact | environmental impact | uncertainty | uncertainty | consumption | consumption | efficiency | efficiency | waste | waste | Ashby | Ashby

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.92 Energy, Environment, and Society (MIT) 5.92 Energy, Environment, and Society (MIT)

Description

"Energy, Environment and Society" is an opportunity for first-year students to make direct contributions to energy innovations at MIT and in local communities. The class takes a project-based approach, bringing student teams together to conduct studies that will help MIT, Cambridge and Boston to make tangible improvements in their energy management systems. Students will develop a thorough understanding of energy systems and their major components through guest lectures by researchers from across MIT and will apply that knowledge in their projects. Students are involved in all aspects of project design, from the refinement of research questions to data collection and analysis, conclusion drawing and presentation of findings. Each student team will work closely with experts including loca "Energy, Environment and Society" is an opportunity for first-year students to make direct contributions to energy innovations at MIT and in local communities. The class takes a project-based approach, bringing student teams together to conduct studies that will help MIT, Cambridge and Boston to make tangible improvements in their energy management systems. Students will develop a thorough understanding of energy systems and their major components through guest lectures by researchers from across MIT and will apply that knowledge in their projects. Students are involved in all aspects of project design, from the refinement of research questions to data collection and analysis, conclusion drawing and presentation of findings. Each student team will work closely with experts including loca

Subjects

energy | energy | environment | environment | society | society | energy initiative | energy initiative | project-based | project-based | energy management | energy management | project design | project design | renewable energy | renewable energy | energy efficiency | energy efficiency | transportation | transportation | wind power | wind power | wind mill | wind mill | energy recovery | energy recovery | nuclear reactor | nuclear reactor | infrastructure | infrastructure | climate | climate | thermodynamics | thermodynamics | sustainable energy | sustainable energy | energy calculator | energy calculator | solar power | solar power | solarthermal | solarthermal | solar photovoltaic | solar photovoltaic | greenhouse gas | greenhouse gas | emissions | emissions | turbines | turbines

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.487 Urban Public Finance in Developing Countries (MIT) 11.487 Urban Public Finance in Developing Countries (MIT)

Description

This readings-based course analyzes the structure and operation of government systems in developing countries, with particular emphasis on regional and local governments. Major topics include: the role of decentralization in national economic reform programs, the potential impact of decentralized governments on local economic development, determination of optimal arrangements for sharing fiscal responsibilities among levels of government, evaluation of local revenue and expenditure decisions, and assessment of prospects and options for intergovernmental fiscal reform. Emphasis is on basic economic concerns, with consideration given to political, institutional, and cultural factors. This readings-based course analyzes the structure and operation of government systems in developing countries, with particular emphasis on regional and local governments. Major topics include: the role of decentralization in national economic reform programs, the potential impact of decentralized governments on local economic development, determination of optimal arrangements for sharing fiscal responsibilities among levels of government, evaluation of local revenue and expenditure decisions, and assessment of prospects and options for intergovernmental fiscal reform. Emphasis is on basic economic concerns, with consideration given to political, institutional, and cultural factors.

Subjects

basic economic concerns | basic economic concerns | political | political | institutional | institutional | and cultural factors | and cultural factors | decentralization in national economic reform programs | decentralization in national economic reform programs | the potential impact of decentralized governments on local economic development | the potential impact of decentralized governments on local economic development | determination of optimal arrangements for sharing fiscal responsibilities among levels of government | determination of optimal arrangements for sharing fiscal responsibilities among levels of government | evaluation of local revenue and expenditure decisions | evaluation of local revenue and expenditure decisions | assessment of prospects and options for intergovernmental fiscal reform | assessment of prospects and options for intergovernmental fiscal reform | political | institutional | and cultural factors | political | institutional | and cultural factors | developing countries | developing countries | public goods | public goods | externalities | externalities | economic development | economic development | balance sheets | balance sheets | fiscal gap | fiscal gap | revenues | revenues | expenditures | expenditures | budget deficits | budget deficits | inflation | inflation | public finance theory | public finance theory | efficiency | efficiency | optimal taxation | optimal taxation | optimal user fees | optimal user fees | basic microeconomic theory | basic microeconomic theory | equity | equity | incidence | incidence | general equilibrium model | general equilibrium model | property taxation | property taxation | tax reform | tax reform | intergovernmental fiscal relations | intergovernmental fiscal relations | fiscal federalism | fiscal federalism | decentralization | decentralization | transfers | transfers | international lending agencies | international lending agencies | programming assistance | programming assistance | conditionalities | conditionalities | public debt | public debt | structural adjustment | structural adjustment | private sector participation | private sector participation | microfinance | microfinance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.121 Microeconomic Theory I (MIT) 14.121 Microeconomic Theory I (MIT)

Description

This half-semester course provides an introduction to microeconomic theory designed to meet the needs of students in the economics Ph.D. program. Some parts of the course are designed to teach material that all graduate students should know. Others are used to introduce methodologies. Topics include consumer and producer theory, markets and competition, general equilibrium, and tools of comparative statics and their application to price theory. Some topics of recent interest may also be covered. This half-semester course provides an introduction to microeconomic theory designed to meet the needs of students in the economics Ph.D. program. Some parts of the course are designed to teach material that all graduate students should know. Others are used to introduce methodologies. Topics include consumer and producer theory, markets and competition, general equilibrium, and tools of comparative statics and their application to price theory. Some topics of recent interest may also be covered.

Subjects

microeconomic theory | microeconomic theory | demand theory | demand theory | producer theory; partial equilibrium | producer theory; partial equilibrium | competitive markets | competitive markets | general equilibrium | general equilibrium | externalities | externalities | Afriat's theorem | Afriat's theorem | pricing | pricing | robust comparative statics | robust comparative statics | utility theory | utility theory | properties of preferences | properties of preferences | choice as primitive | choice as primitive | revealed preference | revealed preference | classical demand theory | classical demand theory | Kuhn-Tucker necessary conditions | Kuhn-Tucker necessary conditions | implications of Walras?s law | implications of Walras?s law | indirect utility functions | indirect utility functions | theorem of the maximum (Berge?s theorem) | theorem of the maximum (Berge?s theorem) | expenditure minimization problem | expenditure minimization problem | Hicksian demands | Hicksian demands | compensated law of demand | compensated law of demand | Slutsky substitution | Slutsky substitution | price changes and welfare | price changes and welfare | compensating variation | compensating variation | and welfare from new goods | and welfare from new goods | price indexes | price indexes | bias in the U.S. consumer price index | bias in the U.S. consumer price index | integrability | integrability | demand aggregation | demand aggregation | aggregate demand and welfare | aggregate demand and welfare | Frisch demands | Frisch demands | and demand estimation | and demand estimation | increasing differences | increasing differences | producer theory applications | producer theory applications | the LeCh?telier principle | the LeCh?telier principle | Topkis? theorem | Topkis? theorem | Milgrom-Shannon monotonicity theorem | Milgrom-Shannon monotonicity theorem | monopoly pricing | monopoly pricing | monopoly and product quality | monopoly and product quality | nonlinear pricing | nonlinear pricing | and price discrimination | and price discrimination | simple models of externalities | simple models of externalities | government intervention | government intervention | Coase theorem | Coase theorem | Myerson-Sattherthwaite proposition | Myerson-Sattherthwaite proposition | missing markets | missing markets | price vs. quantity regulations | price vs. quantity regulations | Weitzman?s analysis | Weitzman?s analysis | uncertainty | uncertainty | common property externalities | common property externalities | optimization | optimization | equilibrium number of boats | equilibrium number of boats | welfare theorems | welfare theorems | uniqueness and determinacy | uniqueness and determinacy | price-taking assumption | price-taking assumption | Edgeworth box | Edgeworth box | welfare properties | welfare properties | Pareto efficiency | Pareto efficiency | Walrasian equilibrium with transfers | Walrasian equilibrium with transfers | Arrow-Debreu economy | Arrow-Debreu economy | separating hyperplanes | separating hyperplanes | Minkowski?s theorem | Minkowski?s theorem | Existence of Walrasian equilibrium | Existence of Walrasian equilibrium | Kakutani?s fixed point theorem | Kakutani?s fixed point theorem | Debreu-Gale-Kuhn-Nikaido lemma | Debreu-Gale-Kuhn-Nikaido lemma | additional properties of general equilibrium | additional properties of general equilibrium | Microfoundations | Microfoundations | core | core | core convergence | core convergence | general equilibrium with time and uncertainty | general equilibrium with time and uncertainty | Jensen?s inequality | Jensen?s inequality | and security market economy | and security market economy | arbitrage pricing theory | arbitrage pricing theory | and risk-neutral probabilities | and risk-neutral probabilities | Housing markets | Housing markets | competitive equilibrium | competitive equilibrium | one-sided matching house allocation problem | one-sided matching house allocation problem | serial dictatorship | serial dictatorship | two-sided matching | two-sided matching | marriage markets | marriage markets | existence of stable matchings | existence of stable matchings | incentives | incentives | housing markets core mechanism | housing markets core mechanism

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.452 Economic Growth (MIT) 14.452 Economic Growth (MIT)

Description

This half semester class presents an introduction to macroeconomic modeling, focusing on the theory of economic growth and some of its applications. It will introduce a number of models of non-stochastic and stochastic macroeconomic equilibrium. It will use these models to shed light both on the process of economic growth at the world level and on sources of income and growth differences across countries. This half semester class presents an introduction to macroeconomic modeling, focusing on the theory of economic growth and some of its applications. It will introduce a number of models of non-stochastic and stochastic macroeconomic equilibrium. It will use these models to shed light both on the process of economic growth at the world level and on sources of income and growth differences across countries.

Subjects

economic growth | economic growth | development | development | modern | modern | world income distribution | world income distribution | Solow growth model | Solow growth model | income differences | income differences | neoclassical growth | neoclassical growth | optimal and competitive allocations | optimal and competitive allocations | welfare theorems | welfare theorems | overlapping generations | overlapping generations | dynamic efficiency | dynamic efficiency | growth under uncertainty | growth under uncertainty | incomplete markets | incomplete markets | neoclassical endogenous growth | neoclassical endogenous growth | capital accumulation | capital accumulation | externalities | externalities | human capital | human capital | endogenous growth | endogenous growth | expanding input varieties | expanding input varieties | directed technical change | directed technical change | endogenous skill-bias technological change | endogenous skill-bias technological change | endogenous labor-augmenting technological change | endogenous labor-augmenting technological change | interdependences | interdependences | technology diffusion | technology diffusion | open economy | open economy | trade | trade

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata