Searching for electrical conductivity : 9 results found | RSS Feed for this search

Magnetic Materials and Devices (MIT) Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance. This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | electrical | optical | and magnetic devices | microstructural characteristics of materials | microstructural characteristics of materials | device-motivated approach | device-motivated approach | emerging technologies | emerging technologies | physical phenomena | physical phenomena | electrical conductivity | electrical conductivity | doping | doping | transistors | transistors | photodectors | photodectors | photovoltaics | photovoltaics | luminescence | luminescence | light emitting diodes | light emitting diodes | lasers | lasers | optical phenomena | optical phenomena | photonics | photonics | ferromagnetism | ferromagnetism | magnetoresistance | magnetoresistance | electrical devices | electrical devices | optical devices | optical devices | magnetic devices | magnetic devices | materials | materials | device applications | device applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT) Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance. This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | electrical | optical | and magnetic devices | microstructural characteristics of materials | microstructural characteristics of materials | device-motivated approach | device-motivated approach | emerging technologies | emerging technologies | physical phenomena | physical phenomena | electrical conductivity | electrical conductivity | doping | doping | transistors | transistors | photodectors | photodectors | photovoltaics | photovoltaics | luminescence | luminescence | light emitting diodes | light emitting diodes | lasers | lasers | optical phenomena | optical phenomena | photonics | photonics | ferromagnetism | ferromagnetism | magnetoresistance | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1501: Properties, Characteristics and Alloys of Aluminium

Description

This lecture provides a survey of the aluminium alloys available to the user; it describes their various properties; it gives an insight into the choice of aluminium for a proposed application. In the context of this lecture not every individual alloy and its properties have been treated in detail, but rather divided into alloy types with reference to the most commonly used alloys. For further details on alloy properties the reader is referred to available databanks like ALUSELECT of the European Aluminium Association (EAA) or to the European and national materials standards. Good engineering background in materials, design and manufacturing processes is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | properties | selection criteria | production | industry | recycled aluminium | secondary aluminium | atomic structure | crystal structure | density | electrical conductivity | resistivity | thermal conductivity | reflectance | non-magnetic | emissivity | corrosion resistance | thermal expansion | melting temperature | latent heat | specific heat | identification | aluminium - copper alloys | aluminium - manganese alloys | aluminium - silicon alloys | aluminium - magnesium alloys | aluminium - magnesium - silicon alloys | aluminium - zinc - magnesium alloys | aluminium - zinc - magnesium - copper alloys | ingot | casting | work hardening | dispersion hardening | solid solution hardening | precipitation hardening | temper designations | non heat-treatable alloys | heat-treatable alloys | applications | mechanical properties | tensile strength | strength/weight ratio | proof stress | elastic properties | elongation | compression | bearing | shear | hardness | ductility | creep | impact strength | elevated temperatures | low temperatures | fracture characteristics | fatigue | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Functional Behaviour of Materials: Introduction to Semiconductors

Description

This set of animations covers the principles and applications of semiconductors. From TLP: Introduction to Semiconductors

Subjects

electrical conductivity | Schottky barrier | p-type | n-type | bipolar | transistor | electron affinity | work function | holes | DoITPoMS | University of Cambridge | animation | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_animations.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1501: Properties, Characteristics and Alloys of Aluminium

Description

This lecture provides a survey of the aluminium alloys available to the user; it describes their various properties; it gives an insight into the choice of aluminium for a proposed application. In the context of this lecture not every individual alloy and its properties have been treated in detail, but rather divided into alloy types with reference to the most commonly used alloys. For further details on alloy properties the reader is referred to available databanks like ALUSELECT of the European Aluminium Association (EAA) or to the European and national materials standards. Good engineering background in materials, design and manufacturing processes is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | properties | selection criteria | production | industry | recycled aluminium | secondary aluminium | atomic structure | crystal structure | density | electrical conductivity | resistivity | thermal conductivity | reflectance | non-magnetic | emissivity | corrosion resistance | thermal expansion | melting temperature | latent heat | specific heat | identification | aluminium - copper alloys | aluminium - manganese alloys | aluminium - silicon alloys | aluminium - magnesium alloys | aluminium - magnesium - silicon alloys | aluminium - zinc - magnesium alloys | aluminium - zinc - magnesium - copper alloys | ingot | casting | work hardening | dispersion hardening | solid solution hardening | precipitation hardening | temper designations | non heat-treatable alloys | heat-treatable alloys | applications | mechanical properties | tensile strength | strength/weight ratio | proof stress | elastic properties | elongation | compression | bearing | shear | hardness | ductility | creep | impact strength | elevated temperatures | low temperatures | fracture characteristics | fatigue | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Functional Behaviour of Materials: Introduction to Semiconductors

Description

This set of animations covers the principles and applications of semiconductors. From TLP: Introduction to Semiconductors

Subjects

electrical conductivity | schottky barrier | p-type | n-type | bipolar | transistor | electron affinity | work function | holes | doitpoms | university of cambridge | animation | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance | electrical devices | optical devices | magnetic devices | materials | device applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata