Searching for electrophysiology : 17 results found | RSS Feed for this search

1

9.03 Neural Basis of Learning and Memory (MIT) 9.03 Neural Basis of Learning and Memory (MIT)

Description

This course covers topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. In lectures and discussion of papers, emphasis is placed on human and animal models of hippocampal mechanisms and function. This course covers topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. In lectures and discussion of papers, emphasis is placed on human and animal models of hippocampal mechanisms and function.

Subjects

learning | learning | memory | memory | neural plasticity | neural plasticity | electrophysiology | electrophysiology | hippocampus | hippocampus | synapse | synapse | aplysia | aplysia | drosophlia | drosophlia | NMDA | NMDA | semantic memory | semantic memory | working memory | working memory | short-term memory | short-term memory | alzheimer's disease | alzheimer's disease

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT) 9.03 Neural Basis of Learning and Memory (MIT)

Description

Topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. Emphasis on human and animal models of hippocampal mechanisms and function. Lectures and discussion of papers. An additional project is required for graduate credit. This course is offered alternate years. Topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. Emphasis on human and animal models of hippocampal mechanisms and function. Lectures and discussion of papers. An additional project is required for graduate credit. This course is offered alternate years.

Subjects

learning | learning | memory | memory | neural plasticity | neural plasticity | electrophysiology | electrophysiology | hippocampus | hippocampus

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT) 9.03 Neural Basis of Learning and Memory (MIT)

Description

This course highlights the interplay between cellular and molecular storage mechanisms and the cognitive neuroscience of memory, with an emphasis on human and animal models of hippocampal mechanisms and function. Class sessions include lectures and discussion of papers. This course highlights the interplay between cellular and molecular storage mechanisms and the cognitive neuroscience of memory, with an emphasis on human and animal models of hippocampal mechanisms and function. Class sessions include lectures and discussion of papers.

Subjects

learning | learning | memory | memory | neural plasticity | neural plasticity | electrophysiology | electrophysiology | hippocampus | hippocampus | synapse | synapse | aplysia | aplysia | drosophlia | drosophlia | NMDA | NMDA | semantic memory | semantic memory | working memory | working memory | short-term memory | short-term memory | alzheimer's disease | alzheimer's disease | skill learning | skill learning | mirror neurons | mirror neurons | short-term | short-term | long-term | long-term

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.96 Experimental Methods of Adjustable Tetrode Array Neurophysiology (MIT) 9.96 Experimental Methods of Adjustable Tetrode Array Neurophysiology (MIT)

Description

Students will be exposed to all aspects of a cutting-edge technique in modern electrophysiology, in a highly structured, team oriented environment. The research projects will probe the neural mechanisms of learning and memory through tetrode array recordings coupled with patterned microstimulation. Due to the broad nature of tasks to be completed, coupled with the team oriented approach we will be employing, we are interested in students with a wide variety of laboratory experience and skill levels. Students will be exposed to all aspects of a cutting-edge technique in modern electrophysiology, in a highly structured, team oriented environment. The research projects will probe the neural mechanisms of learning and memory through tetrode array recordings coupled with patterned microstimulation. Due to the broad nature of tasks to be completed, coupled with the team oriented approach we will be employing, we are interested in students with a wide variety of laboratory experience and skill levels.

Subjects

electrophysiology | electrophysiology | implant | implant | rodent | rodent | behavioral experiment | behavioral experiment | microdrive array | microdrive array | animal experiment | animal experiment | experimental design | experimental design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.542J Quantitative Physiology: Organ Transport Systems (MIT) HST.542J Quantitative Physiology: Organ Transport Systems (MIT)

Description

This course elaborates on the application of the principles of energy and mass flow to major human organ systems. It discusses mechanisms of regulation and homeostasis. It also discusses anatomical, physiological, and pathophysiological features of the cardiovascular, respiratory, and renal systems. There is emphasis on those systems, features, and devices that are most illuminated by the methods of physical sciences. This course elaborates on the application of the principles of energy and mass flow to major human organ systems. It discusses mechanisms of regulation and homeostasis. It also discusses anatomical, physiological, and pathophysiological features of the cardiovascular, respiratory, and renal systems. There is emphasis on those systems, features, and devices that are most illuminated by the methods of physical sciences.

Subjects

electrocardiogram | electrocardiogram | cardiovascular system | cardiovascular system | cardiovascular physiology | cardiovascular physiology | electrophysiology | electrophysiology | myocardial cells | myocardial cells | electrocardiography | electrocardiography | physiological fluid mechanics | physiological fluid mechanics | respiratory physiology | respiratory physiology | renal physiology | renal physiology | quantitative physiology | quantitative physiology | pulmonary mechanics | pulmonary mechanics | heart | heart | arrhythmia | arrhythmia | pulmonary modeling | pulmonary modeling | clinical electrocardiography | clinical electrocardiography | ECG | ECG | EKG | EKG | ischemia | ischemia | infarction | infarction | vector cardiogram | vector cardiogram | purkinje fibers | purkinje fibers | QRS waveform | QRS waveform | tachycardia | tachycardia | action potential | action potential | depolarization | depolarization | afterdepolarization | afterdepolarization | total lung capacity | total lung capacity | systolic | systolic | diastolic | diastolic | residual volume | residual volume | vital capacity | vital capacity | HST.542 | HST.542 | 2.792 | 2.792 | 20.371J20.371 | 20.371J20.371 | 6.022 | 6.022

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.17 Systems Neuroscience Lab (MIT) 9.17 Systems Neuroscience Lab (MIT)

Description

Systems Neuroscience Laboratory consists of a series of laboratories designed to give students experience with basic techniques for conducting systems neuroscience research. It includes sessions on anatomical, neurophysiological, and data acquisition and analysis techniques, and the ways these techniques are used to study nervous system function. Training is provided in the art of scientific writing with feedback designed to improve writing skills. Assignments include weekly preparation for lab sessions, two major research reports and a series of basic computer programming tutorials (MATLAB®). The class involves the use of experimental animals. Enrollment is limited. Systems Neuroscience Laboratory consists of a series of laboratories designed to give students experience with basic techniques for conducting systems neuroscience research. It includes sessions on anatomical, neurophysiological, and data acquisition and analysis techniques, and the ways these techniques are used to study nervous system function. Training is provided in the art of scientific writing with feedback designed to improve writing skills. Assignments include weekly preparation for lab sessions, two major research reports and a series of basic computer programming tutorials (MATLAB®). The class involves the use of experimental animals. Enrollment is limited.

Subjects

laboratory | laboratory | experiment | experiment | protocol | protocol | neuroscience | neuroscience | nerves | nerves | nervous system | nervous system | electrophysiology | electrophysiology | action potential | action potential | neurophysiology | neurophysiology | rat barrel | rat barrel | MATLAB | MATLAB | frog | frog | fly | fly | vision | vision | physiology | physiology | human | human | MRI | MRI | EEG | EEG | electroencephalography | electroencephalography | ablation | ablation | computer modeling techniques | computer modeling techniques | brain function | brain function | histology | histology | neural tissue | neural tissue | surgery | surgery | laboratory notebook | laboratory notebook | scientific writing | scientific writing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.346 Fine-Tuning the Synapse: Synaptic Functions and Dysfunction (MIT) 7.346 Fine-Tuning the Synapse: Synaptic Functions and Dysfunction (MIT)

Description

The synapse is the fundamental element by which neurons transmit, receive and transform information in the brain. Synapses are functionally diverse, and a single neuron in the brain receives up to 10,000 synapses. Given the enormous complexity of the nervous system, how does a neuron integrate, encode and retrieve information? How is information processed beyond a single cell within the context of a neuronal circuit? Fundamental synaptic mechanisms underlie expression of higher-order brain functions, such as learning and memory, and cognition. Conversely, the disruption of synaptic processes contributes to the development of neurological disorders. In this course, students will learn to critically analyze the primary research literature to explore how synapses are studied and to understand The synapse is the fundamental element by which neurons transmit, receive and transform information in the brain. Synapses are functionally diverse, and a single neuron in the brain receives up to 10,000 synapses. Given the enormous complexity of the nervous system, how does a neuron integrate, encode and retrieve information? How is information processed beyond a single cell within the context of a neuronal circuit? Fundamental synaptic mechanisms underlie expression of higher-order brain functions, such as learning and memory, and cognition. Conversely, the disruption of synaptic processes contributes to the development of neurological disorders. In this course, students will learn to critically analyze the primary research literature to explore how synapses are studied and to understand

Subjects

Synapse | Synapse | synaptic mechanisms | synaptic mechanisms | plasticity | plasticity | excitatory synapses | excitatory synapses | inhibitory synapses | inhibitory synapses | excitation-inhibition balance | excitation-inhibition balance | neuropsychiatric disorders | neuropsychiatric disorders | electrophysiology | electrophysiology | optogenetics | optogenetics | neural circuits | neural circuits | synaptic vesicle fusion | synaptic vesicle fusion | glia | glia | synapse formation | synapse formation | canonical microcircuits | canonical microcircuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.123 Neurotechnology in Action (MIT) 9.123 Neurotechnology in Action (MIT)

Description

This course, as a part of MIT's Center for Neurobiological Engineering curriculum, explores cutting-edge neurotechnology that is essential for advances in all aspects of neuroscience, including improvements in existing methods as well as the development, testing and discussion of completely new paradigms. Readings and in-class sessions cover the fields of electrophysiology, light microscopy, cellular engineering, optogenetics, electron microscopy, MRI / fMRI, and MEG / EEG. The course is designed with lectures that cover the background, context, and theoretical descriptions of neurotechnologies, and labs, which provide firsthand demonstrations as well as in situ lab tours. This course, as a part of MIT's Center for Neurobiological Engineering curriculum, explores cutting-edge neurotechnology that is essential for advances in all aspects of neuroscience, including improvements in existing methods as well as the development, testing and discussion of completely new paradigms. Readings and in-class sessions cover the fields of electrophysiology, light microscopy, cellular engineering, optogenetics, electron microscopy, MRI / fMRI, and MEG / EEG. The course is designed with lectures that cover the background, context, and theoretical descriptions of neurotechnologies, and labs, which provide firsthand demonstrations as well as in situ lab tours.

Subjects

Neurotechnology | Neurotechnology | neuron | neuron | electrophysiology | electrophysiology | light microscopy | light microscopy | cellular engineering | cellular engineering | optogenetics | optogenetics | electron microscopy | electron microscopy | MRI/fMRI | MRI/fMRI | functional MRI | functional MRI | MEG/EEG | MEG/EEG

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

From sound to meaning: hearing, speech and language

Description

Human communication is vastly more complex than that of any other species we know about. It is so complex that linguists are only just beginning to identify the processes in the brain that are related to understanding language. This unit looks at how language is understood by taking an interdisciplinary approach.

Subjects

aphasia | brain_imaging | electrophysiology | neurobiology | phonemes | sound | spectrogram | science and nature | brain | communication | grammar | hearing | language | linguistics | perception | psychology | syntax | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT)

Description

This course covers topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. In lectures and discussion of papers, emphasis is placed on human and animal models of hippocampal mechanisms and function.

Subjects

learning | memory | neural plasticity | electrophysiology | hippocampus | synapse | aplysia | drosophlia | NMDA | semantic memory | working memory | short-term memory | alzheimer's disease

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT)

Description

Topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. Emphasis on human and animal models of hippocampal mechanisms and function. Lectures and discussion of papers. An additional project is required for graduate credit. This course is offered alternate years.

Subjects

learning | memory | neural plasticity | electrophysiology | hippocampus

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.346 Fine-Tuning the Synapse: Synaptic Functions and Dysfunction (MIT)

Description

The synapse is the fundamental element by which neurons transmit, receive and transform information in the brain. Synapses are functionally diverse, and a single neuron in the brain receives up to 10,000 synapses. Given the enormous complexity of the nervous system, how does a neuron integrate, encode and retrieve information? How is information processed beyond a single cell within the context of a neuronal circuit? Fundamental synaptic mechanisms underlie expression of higher-order brain functions, such as learning and memory, and cognition. Conversely, the disruption of synaptic processes contributes to the development of neurological disorders. In this course, students will learn to critically analyze the primary research literature to explore how synapses are studied and to understand

Subjects

Synapse | synaptic mechanisms | plasticity | excitatory synapses | inhibitory synapses | excitation-inhibition balance | neuropsychiatric disorders | electrophysiology | optogenetics | neural circuits | synaptic vesicle fusion | glia | synapse formation | canonical microcircuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.123 Neurotechnology in Action (MIT)

Description

This course, as a part of MIT's Center for Neurobiological Engineering curriculum, explores cutting-edge neurotechnology that is essential for advances in all aspects of neuroscience, including improvements in existing methods as well as the development, testing and discussion of completely new paradigms. Readings and in-class sessions cover the fields of electrophysiology, light microscopy, cellular engineering, optogenetics, electron microscopy, MRI / fMRI, and MEG / EEG. The course is designed with lectures that cover the background, context, and theoretical descriptions of neurotechnologies, and labs, which provide firsthand demonstrations as well as in situ lab tours.

Subjects

Neurotechnology | neuron | electrophysiology | light microscopy | cellular engineering | optogenetics | electron microscopy | MRI/fMRI | functional MRI | MEG/EEG

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.17 Systems Neuroscience Lab (MIT)

Description

Systems Neuroscience Laboratory consists of a series of laboratories designed to give students experience with basic techniques for conducting systems neuroscience research. It includes sessions on anatomical, neurophysiological, and data acquisition and analysis techniques, and the ways these techniques are used to study nervous system function. Training is provided in the art of scientific writing with feedback designed to improve writing skills. Assignments include weekly preparation for lab sessions, two major research reports and a series of basic computer programming tutorials (MATLAB®). The class involves the use of experimental animals. Enrollment is limited.

Subjects

laboratory | experiment | protocol | neuroscience | nerves | nervous system | electrophysiology | action potential | neurophysiology | rat barrel | MATLAB | frog | fly | vision | physiology | human | MRI | EEG | electroencephalography | ablation | computer modeling techniques | brain function | histology | neural tissue | surgery | laboratory notebook | scientific writing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT)

Description

This course highlights the interplay between cellular and molecular storage mechanisms and the cognitive neuroscience of memory, with an emphasis on human and animal models of hippocampal mechanisms and function. Class sessions include lectures and discussion of papers.

Subjects

learning | memory | neural plasticity | electrophysiology | hippocampus | synapse | aplysia | drosophlia | NMDA | semantic memory | working memory | short-term memory | alzheimer's disease | skill learning | mirror neurons | short-term | long-term

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.542J Quantitative Physiology: Organ Transport Systems (MIT)

Description

This course elaborates on the application of the principles of energy and mass flow to major human organ systems. It discusses mechanisms of regulation and homeostasis. It also discusses anatomical, physiological, and pathophysiological features of the cardiovascular, respiratory, and renal systems. There is emphasis on those systems, features, and devices that are most illuminated by the methods of physical sciences.

Subjects

electrocardiogram | cardiovascular system | cardiovascular physiology | electrophysiology | myocardial cells | electrocardiography | physiological fluid mechanics | respiratory physiology | renal physiology | quantitative physiology | pulmonary mechanics | heart | arrhythmia | pulmonary modeling | clinical electrocardiography | ECG | EKG | ischemia | infarction | vector cardiogram | purkinje fibers | QRS waveform | tachycardia | action potential | depolarization | afterdepolarization | total lung capacity | systolic | diastolic | residual volume | vital capacity | HST.542 | 2.792 | 20.371J20.371 | 6.022

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.96 Experimental Methods of Adjustable Tetrode Array Neurophysiology (MIT)

Description

Students will be exposed to all aspects of a cutting-edge technique in modern electrophysiology, in a highly structured, team oriented environment. The research projects will probe the neural mechanisms of learning and memory through tetrode array recordings coupled with patterned microstimulation. Due to the broad nature of tasks to be completed, coupled with the team oriented approach we will be employing, we are interested in students with a wide variety of laboratory experience and skill levels.

Subjects

electrophysiology | implant | rodent | behavioral experiment | microdrive array | animal experiment | experimental design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata