Searching for elongation : 10 results found | RSS Feed for this search

TALAT Lecture 1501: Properties, Characteristics and Alloys of Aluminium

Description

This lecture provides a survey of the aluminium alloys available to the user; it describes their various properties; it gives an insight into the choice of aluminium for a proposed application. In the context of this lecture not every individual alloy and its properties have been treated in detail, but rather divided into alloy types with reference to the most commonly used alloys. For further details on alloy properties the reader is referred to available databanks like ALUSELECT of the European Aluminium Association (EAA) or to the European and national materials standards. Good engineering background in materials, design and manufacturing processes is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | properties | selection criteria | production | industry | recycled aluminium | secondary aluminium | atomic structure | crystal structure | density | electrical conductivity | resistivity | thermal conductivity | reflectance | non-magnetic | emissivity | corrosion resistance | thermal expansion | melting temperature | latent heat | specific heat | identification | aluminium - copper alloys | aluminium - manganese alloys | aluminium - silicon alloys | aluminium - magnesium alloys | aluminium - magnesium - silicon alloys | aluminium - zinc - magnesium alloys | aluminium - zinc - magnesium - copper alloys | ingot | casting | work hardening | dispersion hardening | solid solution hardening | precipitation hardening | temper designations | non heat-treatable alloys | heat-treatable alloys | applications | mechanical properties | tensile strength | strength/weight ratio | proof stress | elastic properties | elongation | compression | bearing | shear | hardness | ductility | creep | impact strength | elevated temperatures | low temperatures | fracture characteristics | fatigue | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4702: Factors Influencing the Strength of Adhesive Joints

Description

This lecture describes the factors governing the strength of adhesive joints in order to appreciate these factors for the design of adhesively bonded joints, i.e. geometry of joint, stiffness and strength of the adjoining parts, stress distribution in the adhesive layer as well as the effects of humidity and ageing. General background in production engineering and material science, some knowledge of mechanics and polymer science is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | adhesive bonding | strength | design | stress distributions | lap joints | load distribution | adhesive sheet joints | brittle adhesive layer | elastic-plastic adhesive layer | peeling | geometric parameters | overlapping | overlap length | joining part elongation | stiffness | adhesive strength | joining part thickness | strength of joint parts | ageing | stress | humidity | alloy 6060 - t6 | fatigue strength | deformation behaviour | repeated stress | number of cycles | adhesive layers | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Extruded aluminium

Description

Nucleation of the recrystallized grain structure is very sluggish in this material, but growth rates are rapid, giving rise to a coarse microstructure.

Subjects

alloy | aluminium | annealing | cold swaging | elongation | extrusion | metal | recrystallisation | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Channelling contrast TEM image of subgrains of extruded aluminium

Description

Fine subgrains can be resolved on the electropolished specimen due to channelling contrast where the intensity of backscattered electrons relates to the crystallographic planes, giving great sensitivity to orientation. The subgrain boundaries coincide with the stringers of fine oxide particles which have formed parallel to the extrusion direction (horizontal).

Subjects

alloy | aluminium | annealing | channelling contrast | elongation | extrusion | metal | stringers | subgrains | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The grain structure of extruded aluminium

Description

The extrusion process leads to the elongation of grains. This micrograph shows a longitudinal section with the extrusion direction lying horizontal. Some large subgrains (or groups of subgrains) are apparent, and some high angle boundary migration has occurred normal to the extrusion direction. Grains near the extrudate centre have a lower aspect ratio.

Subjects

alloy | aluminium | elongation | extrusion | metal | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4702: Factors Influencing the Strength of Adhesive Joints

Description

This lecture describes the factors governing the strength of adhesive joints in order to appreciate these factors for the design of adhesively bonded joints, i.e. geometry of joint, stiffness and strength of the adjoining parts, stress distribution in the adhesive layer as well as the effects of humidity and ageing. General background in production engineering and material science, some knowledge of mechanics and polymer science is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | adhesive bonding | strength | design | stress distributions | lap joints | load distribution | adhesive sheet joints | brittle adhesive layer | elastic-plastic adhesive layer | peeling | geometric parameters | overlapping | overlap length | joining part elongation | stiffness | adhesive strength | joining part thickness | strength of joint parts | ageing | stress | humidity | alloy 6060 - T6 | fatigue strength | deformation behaviour | repeated stress | number of cycles | adhesive layers | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1501: Properties, Characteristics and Alloys of Aluminium

Description

This lecture provides a survey of the aluminium alloys available to the user; it describes their various properties; it gives an insight into the choice of aluminium for a proposed application. In the context of this lecture not every individual alloy and its properties have been treated in detail, but rather divided into alloy types with reference to the most commonly used alloys. For further details on alloy properties the reader is referred to available databanks like ALUSELECT of the European Aluminium Association (EAA) or to the European and national materials standards. Good engineering background in materials, design and manufacturing processes is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | properties | selection criteria | production | industry | recycled aluminium | secondary aluminium | atomic structure | crystal structure | density | electrical conductivity | resistivity | thermal conductivity | reflectance | non-magnetic | emissivity | corrosion resistance | thermal expansion | melting temperature | latent heat | specific heat | identification | aluminium - copper alloys | aluminium - manganese alloys | aluminium - silicon alloys | aluminium - magnesium alloys | aluminium - magnesium - silicon alloys | aluminium - zinc - magnesium alloys | aluminium - zinc - magnesium - copper alloys | ingot | casting | work hardening | dispersion hardening | solid solution hardening | precipitation hardening | temper designations | non heat-treatable alloys | heat-treatable alloys | applications | mechanical properties | tensile strength | strength/weight ratio | proof stress | elastic properties | elongation | compression | bearing | shear | hardness | ductility | creep | impact strength | elevated temperatures | low temperatures | fracture characteristics | fatigue | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Extruded aluminium

Description

Nucleation of the recrystallized grain structure is very sluggish in this material, but growth rates are rapid, giving rise to a coarse microstructure.

Subjects

alloy | aluminium | annealing | cold swaging | elongation | extrusion | metal | recrystallisation | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Channelling contrast TEM image of subgrains of extruded aluminium

Description

Fine subgrains can be resolved on the electropolished specimen due to channelling contrast where the intensity of backscattered electrons relates to the crystallographic planes, giving great sensitivity to orientation. The subgrain boundaries coincide with the stringers of fine oxide particles which have formed parallel to the extrusion direction (horizontal).

Subjects

alloy | aluminium | annealing | channelling contrast | elongation | extrusion | metal | stringers | subgrains | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The grain structure of extruded aluminium

Description

The extrusion process leads to the elongation of grains. This micrograph shows a longitudinal section with the extrusion direction lying horizontal. Some large subgrains (or groups of subgrains) are apparent, and some high angle boundary migration has occurred normal to the extrusion direction. Grains near the extrudate centre have a lower aspect ratio.

Subjects

alloy | aluminium | elongation | extrusion | metal | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata