Searching for enzyme kinetics : 8 results found | RSS Feed for this search

Communication (MIT) Communication (MIT)

Description

This introductory biology laboratory course covers the application of experimental techniques in microbiology, biochemistry, cell and developmental biology. Emphasis is placed on the integration of factual knowledge with understanding of the design of the experiments and data analysis in order to prepare the students for future research projects. Development of skills critical for writing about scientific findings in modern biology is also covered in the Scientific Communications portion of the curriculum, 7.02CI. Additional Faculty Dr. Katherine Bacon Schneider Dr. Jean-Francois Hamel Ms. Deborah Kruzel Dr. Megan Rokop This introductory biology laboratory course covers the application of experimental techniques in microbiology, biochemistry, cell and developmental biology. Emphasis is placed on the integration of factual knowledge with understanding of the design of the experiments and data analysis in order to prepare the students for future research projects. Development of skills critical for writing about scientific findings in modern biology is also covered in the Scientific Communications portion of the curriculum, 7.02CI. Additional Faculty Dr. Katherine Bacon Schneider Dr. Jean-Francois Hamel Ms. Deborah Kruzel Dr. Megan Rokop

Subjects

experimental biology | experimental biology | microbial genetics | microbial genetics | protein biochemistry | protein biochemistry | recombinant DNA | recombinant DNA | development | development | zebrafish | zebrafish | phase contrast microscopy | phase contrast microscopy | teratogenesis | teratogenesis | rna isolation | rna isolation | northern blot | northern blot | gene expression | gene expression | western blot | western blot | PCR | PCR | polymerase chain reaction | polymerase chain reaction | RNA gel | RNA gel | RNA fixation | RNA fixation | probe labeling | probe labeling | mutagenesis | mutagenesis | transposon | transposon | column chromatography | column chromatography | size-exclusion chromatography | size-exclusion chromatography | anion exchange chromatography | anion exchange chromatography | SDS-Page gel | SDS-Page gel | enzyme kinetics | enzyme kinetics | transformation | transformation | primers | primers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.492-2 Integrated Chemical Engineering Topics I: Introduction to Biocatalysis (MIT) 10.492-2 Integrated Chemical Engineering Topics I: Introduction to Biocatalysis (MIT)

Description

This course provides a brief introduction to the field of biocatalysis in the context of process design. Fundamental topics include why and when one may choose to use biological systems for chemical conversion, considerations for using free enzymes versus whole cells, and issues related to design and development of bioconversion processes. Biological and engineering problems are discussed as well as how one may arrive at both biological and engineering solutions. This course provides a brief introduction to the field of biocatalysis in the context of process design. Fundamental topics include why and when one may choose to use biological systems for chemical conversion, considerations for using free enzymes versus whole cells, and issues related to design and development of bioconversion processes. Biological and engineering problems are discussed as well as how one may arrive at both biological and engineering solutions.

Subjects

biocatalysis | biocatalysis | enzymes | enzymes | enzyme kinetics | enzyme kinetics | whole cell catalysts | whole cell catalysts | biocatalytic processes | biocatalytic processes | site-directed mutagenesis | site-directed mutagenesis | cloning | cloning | enzyme performance | enzyme performance | enzyme specificity | enzyme specificity | enzyme inhibition | enzyme inhibition | enzyme toxicity | enzyme toxicity | yield | yield | enzyme instability | enzyme instability | equilibrium reactions | equilibrium reactions | product solubility | product solubility | substrate solubility | substrate solubility

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Analysis of Biomolecular and Cellular Systems (MIT) 20.320 Analysis of Biomolecular and Cellular Systems (MIT)

Description

This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

biological engineering | biological engineering | kinase | kinase | PyMOL | PyMOL | PyRosetta | PyRosetta | MATLAB | MATLAB | Michaelis-Menten | Michaelis-Menten | bioreactor | bioreactor | bromodomain | bromodomain | protein-ligand interactions | protein-ligand interactions | titration analysis | titration analysis | fractional separation | fractional separation | isothermal titration calorimetry | isothermal titration calorimetry | ITC | ITC | mass spectrometry | mass spectrometry | MS | MS | co-immunoprecipitation | co-immunoprecipitation | Co-IP | Co-IP | Forster resonance energy transfer | Forster resonance energy transfer | FRET | FRET | primary ligation assay | primary ligation assay | PLA | PLA | surface plasmon resonance | surface plasmon resonance | SPR | SPR | enzyme kinetics | enzyme kinetics | kinase engineering | kinase engineering | competitive inhibition | competitive inhibition | epidermal growth factor receptor | epidermal growth factor receptor | mitogen-activated protein kinase | mitogen-activated protein kinase | MAPK | MAPK | genome editing | genome editing | Imatinib | Imatinib | Gleevec | Gleevec | Glivec | Glivec | drug delivery | drug delivery | kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Communication (MIT)

Description

This introductory biology laboratory course covers the application of experimental techniques in microbiology, biochemistry, cell and developmental biology. Emphasis is placed on the integration of factual knowledge with understanding of the design of the experiments and data analysis in order to prepare the students for future research projects. Development of skills critical for writing about scientific findings in modern biology is also covered in the Scientific Communications portion of the curriculum, 7.02CI. Additional Faculty Dr. Katherine Bacon Schneider Dr. Jean-Francois Hamel Ms. Deborah Kruzel Dr. Megan Rokop

Subjects

experimental biology | microbial genetics | protein biochemistry | recombinant DNA | development | zebrafish | phase contrast microscopy | teratogenesis | rna isolation | northern blot | gene expression | western blot | PCR | polymerase chain reaction | RNA gel | RNA fixation | probe labeling | mutagenesis | transposon | column chromatography | size-exclusion chromatography | anion exchange chromatography | SDS-Page gel | enzyme kinetics | transformation | primers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.492-2 Integrated Chemical Engineering Topics I: Introduction to Biocatalysis (MIT)

Description

This course provides a brief introduction to the field of biocatalysis in the context of process design. Fundamental topics include why and when one may choose to use biological systems for chemical conversion, considerations for using free enzymes versus whole cells, and issues related to design and development of bioconversion processes. Biological and engineering problems are discussed as well as how one may arrive at both biological and engineering solutions.

Subjects

biocatalysis | enzymes | enzyme kinetics | whole cell catalysts | biocatalytic processes | site-directed mutagenesis | cloning | enzyme performance | enzyme specificity | enzyme inhibition | enzyme toxicity | yield | enzyme instability | equilibrium reactions | product solubility | substrate solubility

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Communication (MIT)

Description

This introductory biology laboratory course covers the application of experimental techniques in microbiology, biochemistry, cell and developmental biology. Emphasis is placed on the integration of factual knowledge with understanding of the design of the experiments and data analysis in order to prepare the students for future research projects. Development of skills critical for writing about scientific findings in modern biology is also covered in the Scientific Communications portion of the curriculum, 7.02CI. Additional Faculty Dr. Katherine Bacon Schneider Dr. Jean-Francois Hamel Ms. Deborah Kruzel Dr. Megan Rokop

Subjects

experimental biology | microbial genetics | protein biochemistry | recombinant DNA | development | zebrafish | phase contrast microscopy | teratogenesis | rna isolation | northern blot | gene expression | western blot | PCR | polymerase chain reaction | RNA gel | RNA fixation | probe labeling | mutagenesis | transposon | column chromatography | size-exclusion chromatography | anion exchange chromatography | SDS-Page gel | enzyme kinetics | transformation | primers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Analysis of Biomolecular and Cellular Systems (MIT)

Description

This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

biological engineering | kinase | PyMOL | PyRosetta | MATLAB | Michaelis-Menten | bioreactor | bromodomain | protein-ligand interactions | titration analysis | fractional separation | isothermal titration calorimetry | ITC | mass spectrometry | MS | co-immunoprecipitation | Co-IP | Forster resonance energy transfer | FRET | primary ligation assay | PLA | surface plasmon resonance | SPR | enzyme kinetics | kinase engineering | competitive inhibition | epidermal growth factor receptor | mitogen-activated protein kinase | MAPK | genome editing | Imatinib | Gleevec | Glivec | drug delivery | kinetics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | dynamics of cellular processes | intracellular scale | extracellular scale | and cell population scale | biotechnology applications | gene regulation networks | nucleic acid hybridization | signal transduction pathways | cell populations in tissues | cell populations in bioreactors | experimental methods | quantitative analysis | computational modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.492-2 Integrated Chemical Engineering Topics I: Introduction to Biocatalysis (MIT)

Description

This course provides a brief introduction to the field of biocatalysis in the context of process design. Fundamental topics include why and when one may choose to use biological systems for chemical conversion, considerations for using free enzymes versus whole cells, and issues related to design and development of bioconversion processes. Biological and engineering problems are discussed as well as how one may arrive at both biological and engineering solutions.

Subjects

biocatalysis | enzymes | enzyme kinetics | whole cell catalysts | biocatalytic processes | site-directed mutagenesis | cloning | enzyme performance | enzyme specificity | enzyme inhibition | enzyme toxicity | yield | enzyme instability | equilibrium reactions | product solubility | substrate solubility

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata