Searching for eu : 6603 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

Readme file for Introduction to Artificial Intelligence

Description

This readme file contains details of links to all the Introduction to Artificial Intelligence module's material held on Jorum and information about the module as well.

Subjects

ukoer | evolutionary algorithm lecture | algorithm tutorial | genetic algorithm lecture | genetic algorithm example | evolutionary computation tutorial | artificial intelligence lecture | artificial intelligence tutorial | random processes reading material | semantic web reading material | neural networks video | evolutionary computation test | artificial intelligence test | knowledge representation test | neural networks test | evolutionary algorithm | genetic computation | genetic programming | evolutionary computation | artificial intelligence | introduction to artificial intelligence | search | problem solving | revision | knowledge representation | semantic web | neural network | neural networks | artificial neural networks | swarm intelligence | collective intelligence | robot societies | genetic computation lecture | genetic programming lecture | evolutionary computation lecture | introduction to artificial intelligence lecture | evolutionary algorithm tutorial | genetic computation tutorial | genetic programming tutorial | introduction to artificial intelligence tutorial | evolutionary algorithm example | genetic computation example | genetic programming example | evolutionary computation example | artificial intelligence example | introduction to artificial intelligence example | search lecture | problem solving lecture | search tutorial | problem solving tutorial | search example | problem solving example | revision reading material | search reading material | artificial intelligence reading material | introduction to artificial intelligence reading material | revision lecture | knowledge representation lecture | semantic web lecture | knowledge representation practical | semantic web practical | artificial intelligence practical | introduction to artificial intelligence practical | knowledge representation reading material | knowledge representation notes | semantic web notes | artificial intelligence notes | introduction to artificial intelligence notes | neural network lecture | neural networks lecture | artificial neural networks lecture | neural network reading material | neural networks reading material | artificial neural networks reading material | neural network practical | neural networks practical | artificial neural networks practical | neural network viewing material | neural networks viewing material | artificial neural networks viewing material | artificial intelligence viewing material | introduction to artificial intelligence viewing material | swarm intelligence lecture | collective intelligence lecture | robot societies lecture | swarm intelligence tutorial | collective intelligence tutorial | robot societies tutorial | evolutionary algorithm test | genetic computation test | genetic programming test | introduction to artificial intelligence test | search test | problem solving test | semantic web test | neural network test | artificial neural networks test | g700 | ai | g700 lecture | ai lecture | g700 tutorial | ai tutorial | g700 example | ai example | g700 reading material | ai reading material | g700 practical | ai practical | g700 notes | ai notes | g700 viewing material | ai viewing material | g700 test | ai test | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.106 Neutron Interactions and Applications (MIT) 22.106 Neutron Interactions and Applications (MIT)

Description

This course is a foundational study of the effects of single and multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department - fission, fusion, and RST. Particle simulation methods are introduced to deal with complex processes that cannot be studied only experimentally or by numerical solutions of equations. Treatment will emphasize basic concepts and understanding, as well as showing the underlying scientific connections with current research areas. This course is a foundational study of the effects of single and multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department - fission, fusion, and RST. Particle simulation methods are introduced to deal with complex processes that cannot be studied only experimentally or by numerical solutions of equations. Treatment will emphasize basic concepts and understanding, as well as showing the underlying scientific connections with current research areas.

Subjects

Neutron Interaction | Neutron Interaction | Neutron Elastic Scattering: Thermal Motion | Neutron Elastic Scattering: Thermal Motion | Chemical Binding Effects | Chemical Binding Effects | Particle Simulations I | Particle Simulations I | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | The Neutron Transport Equation | The Neutron Transport Equation | Neutron Slowing Down | Neutron Slowing Down | Neutron Diffusion | Neutron Diffusion | Particle Simulation Methods | Particle Simulation Methods | Basic Molecular Dynamics | Basic Molecular Dynamics | Direct Simulation of Melting | Direct Simulation of Melting | Multiscale Materials Modeling | Multiscale Materials Modeling | Thermal Neutron Scattering | Thermal Neutron Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Neuroscience and Behavior (MIT) 9.01 Neuroscience and Behavior (MIT)

Description

Relation of structure and function at various levels of neuronal integration. Topics include: functional neuroanatomy and neurophysiology, sensory and motor systems, centrally programmed behavior, sensory systems, sleep and dreaming, motivation and reward, emotional displays of various types, "higher functions" and the neocortex, and neural processes in learning and memory. In order to improve writing skills in describing experiments and reviewing journal publications in neuroscience, students are required to complete four homework assignments and one literature review with revision. Technical RequirementsMedia player software, such as Quicktime Player, RealOne Player, or Windows Media Player, is required to run the .mp3 files found on this cou Relation of structure and function at various levels of neuronal integration. Topics include: functional neuroanatomy and neurophysiology, sensory and motor systems, centrally programmed behavior, sensory systems, sleep and dreaming, motivation and reward, emotional displays of various types, "higher functions" and the neocortex, and neural processes in learning and memory. In order to improve writing skills in describing experiments and reviewing journal publications in neuroscience, students are required to complete four homework assignments and one literature review with revision. Technical RequirementsMedia player software, such as Quicktime Player, RealOne Player, or Windows Media Player, is required to run the .mp3 files found on this cou

Subjects

functional neuroanatomy | functional neurophysiology | motor systems | centrally programmed behavior | sensory systems | sleep | dreaming | motivation | reward | emotional displays | higher functions" | neocortex | neural processes in learning and memory | functional neuroanatomy | functional neurophysiology | motor systems | centrally programmed behavior | sensory systems | sleep | dreaming | motivation | reward | emotional displays | higher functions" | neocortex | neural processes in learning and memory | functional neuroanatomy | functional neuroanatomy | functional neurophysiology | functional neurophysiology | motor systems | motor systems | centrally programmed behavior | centrally programmed behavior | sensory systems | sensory systems | sleep | sleep | dreaming | dreaming | motivation | motivation | reward | reward | emotional displays | emotional displays | higher functions | higher functions | neocortex | neocortex | neural processes in learning and memory | neural processes in learning and memory | Neurobehavior | Neurobehavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.05 Neutron Science and Reactor Physics (MIT) 22.05 Neutron Science and Reactor Physics (MIT)

Description

This course introduces fundamental properties of the neutron. It covers reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few-group approximation, point kinetics, and fission-product poisoning. It emphasizes the nuclear physics bases of reactor design and its relationship to reactor engineering problems. This course introduces fundamental properties of the neutron. It covers reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few-group approximation, point kinetics, and fission-product poisoning. It emphasizes the nuclear physics bases of reactor design and its relationship to reactor engineering problems.

Subjects

reactor physics | reactor physics | neutron | neutron | reactor layout | reactor layout | binding energy | binding energy | fission | fission | neutron cross-sections | neutron cross-sections | liquid drop model | liquid drop model | neutron life cycle | neutron life cycle | criticality | criticality | accidents | accidents | neutron flux | neutron flux | neutron current | neutron current | neutron diffusion theory | neutron diffusion theory | elastic neutron scattering | elastic neutron scattering | group diffusion method | group diffusion method | subcritical multiplication | subcritical multiplication | point kinetics | point kinetics | dynamic period equation | dynamic period equation | inhour equation | inhour equation | shutdown margin | shutdown margin

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.106 Neutron Interactions and Applications (MIT) 22.106 Neutron Interactions and Applications (MIT)

Description

This course is intended to introduce the student to the concepts and methods of transport theory needed in neutron science applications. This course is a foundational study of the effects of multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department. Stochastic and deterministic simulation techniques will be introduced to the students. This course is intended to introduce the student to the concepts and methods of transport theory needed in neutron science applications. This course is a foundational study of the effects of multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department. Stochastic and deterministic simulation techniques will be introduced to the students.

Subjects

Neutron Interaction | Neutron Interaction | Neutron Elastic Scattering: Thermal Motion | Neutron Elastic Scattering: Thermal Motion | Chemical Binding Effects | Chemical Binding Effects | Particle Simulations I | Particle Simulations I | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | The Neutron Transport Equation | The Neutron Transport Equation | Neutron Slowing Down | Neutron Slowing Down | Neutron Diffusion | Neutron Diffusion | Particle Simulation Methods | Particle Simulation Methods | Basic Molecular Dynamics | Basic Molecular Dynamics | Direct Simulation of Melting | Direct Simulation of Melting | Multiscale Materials Modeling | Multiscale Materials Modeling | Thermal Neutron Scattering | Thermal Neutron Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.05 Neutron Science and Reactor Physics (MIT) 22.05 Neutron Science and Reactor Physics (MIT)

Description

This course introduces fundamental properties of the neutron. It covers reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few-group approximation, point kinetics, and fission-product poisoning. We emphasize the nuclear physics basis of reactor design and its relationship to reactor engineering problems. This course introduces fundamental properties of the neutron. It covers reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few-group approximation, point kinetics, and fission-product poisoning. We emphasize the nuclear physics basis of reactor design and its relationship to reactor engineering problems.

Subjects

reactor physics | reactor physics | reactor layout | reactor layout | binding energy | binding energy | fission | fission | neutron cross-sections | neutron cross-sections | liquid drop model | liquid drop model | neutron life cycle | neutron life cycle | criticality | criticality | accidents | accidents | neutron flux | neutron flux | neutron current | neutron current | neutron diffusion theory | neutron diffusion theory | elastic neutron scattering | elastic neutron scattering | group diffusion method | group diffusion method | subcritical multiplication | subcritical multiplication | point kinetics | point kinetics | dynamic period equation | dynamic period equation | inhour equation | inhour equation | shutdown margin | shutdown margin

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Neural Basis of Vision and Audtion (MIT) 9.04 Neural Basis of Vision and Audtion (MIT)

Description

This course is designed to ground the undergraduate student in the fields of vision and audition, which includes both speech and hearing. The neural bases of visual and auditory processing for perception and sensorimotor control is examined. Topics focus on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Studies in visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are also covered. This course is designed to ground the undergraduate student in the fields of vision and audition, which includes both speech and hearing. The neural bases of visual and auditory processing for perception and sensorimotor control is examined. Topics focus on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Studies in visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are also covered.

Subjects

visual system | visual system | eye-movement control | eye-movement control | retina | retina | lateral geniculate nucleus | lateral geniculate nucleus | visual cortex | visual cortex | the parallel channels | the parallel channels | color | color | motion | motion | depth | depth | form | form | neural control | neural control | visually guided eye movements | visually guided eye movements | middle ear | middle ear | cochlear | cochlear | otoacoustic emissions | otoacoustic emissions | cochlear ultrastructure and neuroanatomy | cochlear ultrastructure and neuroanatomy | cochlear ion homeostasis and synaptic transmission | cochlear ion homeostasis and synaptic transmission | noise-induced and age-related hearing loss | noise-induced and age-related hearing loss | neural degeneration | neural degeneration | neurophysiological | neurophysiological | ascending | ascending | descending | descending | auditory pathways auditory nerve | auditory pathways auditory nerve | cochlear nucleus | cochlear nucleus | inferior colliculus | inferior colliculus | olivocochlear system | olivocochlear system | functional brain imaging | functional brain imaging | tinnitus | tinnitus

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Neural Basis of Vision and Audition (MIT) 9.04 Neural Basis of Vision and Audition (MIT)

Description

Examines the neural bases of visual and auditory processing for perception and sensorimotor control. Focuses on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Studies visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization. Offered alternate years. Examines the neural bases of visual and auditory processing for perception and sensorimotor control. Focuses on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Studies visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization. Offered alternate years.

Subjects

visual system | visual system | eye-movement control | eye-movement control | retina | retina | lateral geniculate nucleus | lateral geniculate nucleus | visual cortex | visual cortex | the parallel channels | the parallel channels | color | color | motion | motion | depth | depth | form | form | neural control | neural control | visually guided eye movements | visually guided eye movements | middle ear | middle ear | cochlear | cochlear | otoacoustic emissions | otoacoustic emissions | cochlear ultrastructure and neuroanatomy | cochlear ultrastructure and neuroanatomy | cochlear ion homeostasis and synaptic transmission | cochlear ion homeostasis and synaptic transmission | noise-induced and age-related hearing loss | noise-induced and age-related hearing loss | neural degeneration | neural degeneration | neurophysiological | neurophysiological | ascending | ascending | descending | descending | auditory pathways auditory nerve | auditory pathways auditory nerve | cochlear nucleus | cochlear nucleus | inferior colliculus | inferior colliculus | olivocochlear system | olivocochlear system | functional brain imaging | functional brain imaging | tinnitus | tinnitus

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.18 Developmental Neurobiology (MIT) 9.18 Developmental Neurobiology (MIT)

Description

This course considers molecular control of neural specification, formation of neuronal connections, construction of neural systems, and the contributions of experience to shaping brain structure and function. Topics include: neural induction and pattern formation, cell lineage and fate determination, neuronal migration, axon guidance, synapse formation and stabilization, activity-dependent development and critical periods, development of behavior. This course considers molecular control of neural specification, formation of neuronal connections, construction of neural systems, and the contributions of experience to shaping brain structure and function. Topics include: neural induction and pattern formation, cell lineage and fate determination, neuronal migration, axon guidance, synapse formation and stabilization, activity-dependent development and critical periods, development of behavior.

Subjects

molecular | molecular | neural specification | neural specification | ormation of neuronal connections | ormation of neuronal connections | construction of neural systems | construction of neural systems | experience | experience | formation of neuronal connections | formation of neuronal connections | neural induction | neural induction | pattern formation | pattern formation | cell lineage | cell lineage | fate determination | fate determination | neuronal migration | neuronal migration | axon guidance | axon guidance | synapse formation | synapse formation | stabilization | stabilization | activity-dependent development | activity-dependent development | critical periods | critical periods | development | development

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.18 Developmental Neurobiology (MIT) 9.18 Developmental Neurobiology (MIT)

Description

This course considers molecular control of neural specification, formation of neuronal connections, construction of neural systems, and the contributions of experience to shaping brain structure and function. Topics include: neural induction and pattern formation, cell lineage and fate determination, neuronal migration, axon guidance, synapse formation and stabilization, activity-dependent development and critical periods, development of behavior. This course considers molecular control of neural specification, formation of neuronal connections, construction of neural systems, and the contributions of experience to shaping brain structure and function. Topics include: neural induction and pattern formation, cell lineage and fate determination, neuronal migration, axon guidance, synapse formation and stabilization, activity-dependent development and critical periods, development of behavior.

Subjects

molecular | molecular | neural specification | neural specification | ormation of neuronal connections | ormation of neuronal connections | construction of neural systems | construction of neural systems | experience | experience | formation of neuronal connections | formation of neuronal connections | neural induction | neural induction | pattern formation | pattern formation | cell lineage | cell lineage | fate determination | fate determination | neuronal migration | neuronal migration | axon guidance | axon guidance | synapse formation | synapse formation | stabilization | stabilization | activity-dependent development | activity-dependent development | critical periods | critical periods | development | development | 9.181 | 9.181 | 7.69 | 7.69

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.072J Queues: Theory and Applications (MIT) 15.072J Queues: Theory and Applications (MIT)

Description

This class deals with the modeling and analysis of queueing systems, with applications in communications, manufacturing, computers, call centers, service industries and transportation. Topics include birth-death processes and simple Markovian queues, networks of queues and product form networks, single and multi-server queues, multi-class queueing networks, fluid models, adversarial queueing networks, heavy-traffic theory and diffusion approximations. The course will cover state of the art results which lead to research opportunities. This class deals with the modeling and analysis of queueing systems, with applications in communications, manufacturing, computers, call centers, service industries and transportation. Topics include birth-death processes and simple Markovian queues, networks of queues and product form networks, single and multi-server queues, multi-class queueing networks, fluid models, adversarial queueing networks, heavy-traffic theory and diffusion approximations. The course will cover state of the art results which lead to research opportunities.

Subjects

modeling | modeling | queueing | queueing | queues | queues | queueing systems | queueing systems | communications | communications | manufacturing | manufacturing | computers | computers | call centers | call centers | service industries | service industries | transportation | transportation | applications | applications | birth-death processes | birth-death processes | markovian queues | markovian queues | networks | networks | single-server | single-server | multi-server | multi-server | multi-class queueing | multi-class queueing | fluid models | fluid models | adversarial queueing | adversarial queueing | heavy-traffic theory | heavy-traffic theory | diffusion approximations | diffusion approximations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.101 Applied Nuclear Physics (MIT) 22.101 Applied Nuclear Physics (MIT)

Description

The topics covered under this course include elements of nuclear physics for engineering students, basic properties of the nucleus and nuclear radiations, quantum mechanical calculations of deuteron bound-state wave function and energy, n-p scattering cross-section, transition probability per unit time and barrier transmission probability. Also explored are binding energy and nuclear stability, interactions of charged particles, neutrons, and gamma rays with matter, radioactive decays, energetics and general cross-section behavior in nuclear reactions. The topics covered under this course include elements of nuclear physics for engineering students, basic properties of the nucleus and nuclear radiations, quantum mechanical calculations of deuteron bound-state wave function and energy, n-p scattering cross-section, transition probability per unit time and barrier transmission probability. Also explored are binding energy and nuclear stability, interactions of charged particles, neutrons, and gamma rays with matter, radioactive decays, energetics and general cross-section behavior in nuclear reactions.

Subjects

Nuclear physics | Nuclear physics | Nuclear reaction | Nuclear reaction | Nucleus | Nucleus | Nuclear radiation | Nuclear radiation | Quantum mechanics | Quantum mechanics | Deuteron bound-state wave function and energy | Deuteron bound-state wave function and energy | n-p scattering cross-section | n-p scattering cross-section | Transition probability per unit time | Transition probability per unit time | Barrier transmission probability | Barrier transmission probability | Binding energy | Binding energy | Nuclear stability | Nuclear stability | Interactions of charged particles neutrons and gamma rays with matter | Interactions of charged particles neutrons and gamma rays with matter | Radioactive decay | Radioactive decay | Energetics | Energetics | nuclear physics | nuclear physics | nuclear reaction | nuclear reaction | nucleus | nucleus | nuclear radiation | nuclear radiation | quantum mechanics | quantum mechanics | deuteron bound-state wave function and energy | deuteron bound-state wave function and energy | transition probability per unit time | transition probability per unit time | barrier transmission probability | barrier transmission probability | nuclear stability | nuclear stability | Interactions of charged particles | Interactions of charged particles | neutrons | neutrons | and gamma rays with matter | and gamma rays with matter | energetics | energetics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.723J Neural Coding and Perception of Sound (MIT) HST.723J Neural Coding and Perception of Sound (MIT)

Description

This course focuses on neural structures and mechanisms mediating the detection, localization and recognition of sounds. Discussions cover how acoustic signals are coded by auditory neurons, the impact of these codes on behavioral performance, and the circuitry and cellular mechanisms underlying signal transformations. Topics include temporal coding, neural maps and feature detectors, learning and plasticity, and feedback control. General principles are conveyed by theme discussions of auditory masking, sound localization, musical pitch, speech coding, and cochlear implants. This course focuses on neural structures and mechanisms mediating the detection, localization and recognition of sounds. Discussions cover how acoustic signals are coded by auditory neurons, the impact of these codes on behavioral performance, and the circuitry and cellular mechanisms underlying signal transformations. Topics include temporal coding, neural maps and feature detectors, learning and plasticity, and feedback control. General principles are conveyed by theme discussions of auditory masking, sound localization, musical pitch, speech coding, and cochlear implants.

Subjects

HST.723 | HST.723 | 9.285 | 9.285 | sound perception | sound perception | neural coding | neural coding | neural structures | neural structures | neural mechanisms | neural mechanisms | sound localization | sound localization | acoustic signals | acoustic signals | auditory neurons | auditory neurons | temporal coding | temporal coding | neural maps | neural maps | feature detectors | feature detectors | learning and plasticity | learning and plasticity | auditory masking | auditory masking | musical pitch | musical pitch | speech coding | speech coding | cochlear implants | cochlear implants | auditory system | auditory system | binaural interactions | binaural interactions | cochlear nucleus | cochlear nucleus | binaural hearing | binaural hearing | frequency selectivity | frequency selectivity | auditory cortex | auditory cortex | scene analysis | scene analysis | object formation | object formation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.09J Cellular Neurobiology (MIT) 9.09J Cellular Neurobiology (MIT)

Description

This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system. This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system.

Subjects

neurobiology | neurobiology | structure | structure | function | function | nervous system | nervous system | cellular | cellular | neurons | neurons | excitable cells | excitable cells | biophysics | biophysics | synaptic transmission | synaptic transmission | neurochemistry | neurochemistry | neurodevelopment | neurodevelopment | visual system | visual system | neuromuscular junction | neuromuscular junction | membrane channels | membrane channels | signaling | signaling | ion channels | ion channels | action potential | action potential | neurotransmitters | neurotransmitters | biochemistry | biochemistry | synapses | synapses | learning | learning | memory | memory | axons | axons | hearing | hearing | thermoreception | thermoreception | pain | pain | cognitive function | cognitive function | 9.09 | 9.09 | 7.29 | 7.29

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.010 Neuroscience and Society (MIT) STS.010 Neuroscience and Society (MIT)

Description

This class explores the social relevance of neuroscience, considering how emerging areas of brain research reflect and reshape social attitudes and agendas. Topics include brain imaging and popular media; neuroscience of empathy, trust, and moral reasoning; new fields of neuroeconomics and neuromarketing; ethical implications of neurotechnologies such as cognitive enhancement pharmaceuticals; neuroscience in the courtroom; and neuroscientific recasting of social problems such as addiction and violence. Guest lectures by neuroscientists, class discussion, and weekly readings in neuroscience, popular media, and science studies. This class explores the social relevance of neuroscience, considering how emerging areas of brain research reflect and reshape social attitudes and agendas. Topics include brain imaging and popular media; neuroscience of empathy, trust, and moral reasoning; new fields of neuroeconomics and neuromarketing; ethical implications of neurotechnologies such as cognitive enhancement pharmaceuticals; neuroscience in the courtroom; and neuroscientific recasting of social problems such as addiction and violence. Guest lectures by neuroscientists, class discussion, and weekly readings in neuroscience, popular media, and science studies.

Subjects

cognitive science | cognitive science | evolutionary psychology | evolutionary psychology | neurobiology | neurobiology | imaging | imaging | MRI | MRI | CT scan | CT scan | fMRI | fMRI | brain | brain | mind | mind | impluse | impluse | brain imaging | brain imaging | morality | morality | moral reasoning | moral reasoning | decision making | decision making | intelligence | intelligence | empathy | empathy | trust | trust | religion | religion | love | love | emotion | emotion | gender differences | gender differences | sexuality | sexuality | stress | stress | prejudice | prejudice | mental focus | mental focus | psychopharmaceuticals | psychopharmaceuticals | antidepressant | antidepressant | neuroeconomics | neuroeconomics | neuromarketing | neuromarketing | neurotheology | neurotheology | cognitive enhancement | cognitive enhancement | witness | witness | courtroom testimony | courtroom testimony | addiction | addiction | violence | violence | learning | learning | behavior | behavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Introduction to Neuroscience (MIT) 9.01 Introduction to Neuroscience (MIT)

Description

This course begins with the study of nerve cells which includes their structure, the propagation of nerve impulses and transfer of information between nerve cells, the effect of drugs on this process, and the development of nerve cells into the brain and spinal cord. Next, sensory systems such as hearing, vision and touch are covered as well as a discussion on how physical energy such as light is converted into neural signals, where these signals travel in the brain and how they are processed. Other topics include the control of voluntary movement, the neurochemical bases of brain diseases, and those systems which control sleep and consciousness, learning and memory. This course begins with the study of nerve cells which includes their structure, the propagation of nerve impulses and transfer of information between nerve cells, the effect of drugs on this process, and the development of nerve cells into the brain and spinal cord. Next, sensory systems such as hearing, vision and touch are covered as well as a discussion on how physical energy such as light is converted into neural signals, where these signals travel in the brain and how they are processed. Other topics include the control of voluntary movement, the neurochemical bases of brain diseases, and those systems which control sleep and consciousness, learning and memory.

Subjects

neuroscience | neuroscience | vision | vision | hearing | hearing | neuroanatomy | neuroanatomy | color vision | color vision | blind spot | blind spot | retinal phototransduction | retinal phototransduction | center-surround receptive fields | center-surround receptive fields | corticalmaps | corticalmaps | primary visual cortex | primary visual cortex | simple cells | simple cells | complex cells | complex cells | extrastriate cortex | extrastriate cortex | ear | ear | cochlea | cochlea | basilar membrane | basilar membrane | auditory transduction | auditory transduction | hair cells | hair cells | phase-locking | phase-locking | tonotopy | tonotopy | sound localization | sound localization | auditory cortex | auditory cortex | somatosensory system | somatosensory system | motor system | motor system | synaptic transmission | synaptic transmission | action potential | action potential | sympathetic neurons | sympathetic neurons | parasympathetic neurons | parasympathetic neurons | cellual neurophysiology | cellual neurophysiology | learning | learning | memory | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT) 9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control.

Subjects

neurotransmission | neurotransmission | nerve terminals | nerve terminals | monoamine transmitters | monoamine transmitters | acetylcholine | acetylcholine | serotonin | serotonin | dopamine | dopamine | norepinephrine | norepinephrine | amino acid and peptide transmitters | amino acid and peptide transmitters | neuromodulators | neuromodulators | adenosine | adenosine | neurotransmitter synthesis | neurotransmitter synthesis | release | release | inactivation | inactivation | receptor-mediated | receptor-mediated | second-messenger | second-messenger | neurotransmitter | neurotransmitter | antidepressant | antidepressant | brain lipid | brain lipid | blood brain barrier | blood brain barrier | parkinson's disease | parkinson's disease | seratonin | seratonin | depression | depression | glutamate | glutamate | aspartate | aspartate | NDMA | NDMA | drug | drug | drug discovery | drug discovery | pharmaceutical | pharmaceutical | signaling pathway | signaling pathway | receptor | receptor | spinal cord | spinal cord | marijuana | marijuana | adensosine | adensosine | histamine | histamine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Introduction to Neuroscience (MIT) 9.01 Introduction to Neuroscience (MIT)

Description

This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain. This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain.

Subjects

neuroscience | neuroscience | vision | vision | hearing | hearing | neuroanatomy | neuroanatomy | color vision | color vision | blind spot | blind spot | retinal phototransduction | retinal phototransduction | cortical maps | cortical maps | primary visual cortex | primary visual cortex | complex cells | complex cells | extrastriate cortex | extrastriate cortex | ear | ear | cochlea | cochlea | basilar membrane | basilar membrane | auditory transduction | auditory transduction | hair cells | hair cells | phase-locking | phase-locking | sound localization | sound localization | auditory cortex | auditory cortex | somatosensory system | somatosensory system | motor system | motor system | synaptic transmission | synaptic transmission | action potential | action potential | sympathetic neurons | sympathetic neurons | parasympathetic neurons | parasympathetic neurons | cellual neurophysiology | cellual neurophysiology | learning | learning | memory | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.322J Genetic Neurobiology (MIT) 9.322J Genetic Neurobiology (MIT)

Description

This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans. This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.

Subjects

neurobiology | neurobiology | genetics | genetics | bacterial chemoreception | bacterial chemoreception | neurogenomics | neurogenomics | genetic analysis | genetic analysis | axonal pathfinding | axonal pathfinding | neurodevelopment | neurodevelopment | synapse formation | synapse formation | neurogenetics | neurogenetics | higher brain function | higher brain function | neuronal ensembles | neuronal ensembles | molecular analysis | molecular analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21L.463 Renaissance Literature (MIT) 21L.463 Renaissance Literature (MIT)

Description

The Renaissance has justly become both famous and notorious as an age of discovery, and its voyages took place in many realms. This semester, we will read several history making narratives of early modern travel: first-hand accounts of discovery, captivity, conquest, or cultural encounter. As Europeans came to acquire experience of unfamiliar places, literary texts of the period began to assimilate this experience by describing imagined voyages across real or fantastic landscapes. Finally, voyages of exploration served Renaissance writers as a metaphor: for intellectual inquiry, for spiritual development, or for the pursuit of love. Among the literary genres sampled this semester will be sonnets, plays, prose narratives, utopias, and chivalric romance. Authors and travellers will include F The Renaissance has justly become both famous and notorious as an age of discovery, and its voyages took place in many realms. This semester, we will read several history making narratives of early modern travel: first-hand accounts of discovery, captivity, conquest, or cultural encounter. As Europeans came to acquire experience of unfamiliar places, literary texts of the period began to assimilate this experience by describing imagined voyages across real or fantastic landscapes. Finally, voyages of exploration served Renaissance writers as a metaphor: for intellectual inquiry, for spiritual development, or for the pursuit of love. Among the literary genres sampled this semester will be sonnets, plays, prose narratives, utopias, and chivalric romance. Authors and travellers will include F

Subjects

Renaissance | Renaissance | literature | literature | Middle Ages | Middle Ages | Professor Vinaver | Professor Vinaver | Middle English | Middle English | Primum Mobile | Primum Mobile | House of Busirane | House of Busirane | Sawles Warde | Sawles Warde | Natalis Comes | Natalis Comes | Unmoved Mover | Unmoved Mover | Colin Clouts Come Home Againe | Colin Clouts Come Home Againe | Eniautos Daimon | Eniautos Daimon | Piers Plowman | Piers Plowman | Prince Arthur | Prince Arthur | Queen Elizabeth | Queen Elizabeth | Round Table | Round Table | Sir Orfeo | Sir Orfeo | heauy plight | heauy plight | neuer wight | neuer wight | knight aliue | knight aliue | wyld man | wyld man | liuing wight | liuing wight | first aduenture | first aduenture | lining wight | lining wight | more increast | more increast | straunger knight | straunger knight | vncouth sight | vncouth sight | vtmost date | vtmost date | saluage man | saluage man | euerlasting fame | euerlasting fame | euill plight | euill plight | straunge aduentures | straunge aduentures | haue rent | haue rent | deare besought | deare besought | nigh approcht | nigh approcht | euery ioynt | euery ioynt | yron man | yron man | braue knights | braue knights | faire damzell | faire damzell | forrest wyde | forrest wyde | euery vaine | euery vaine | heauens hight | heauens hight | Sir Guyon | Sir Guyon | Sir Calidore | Sir Calidore | Sir Satyrane | Sir Satyrane | Briton Prince | Briton Prince | Faerie Queene | Faerie Queene | Sir Calepine | Sir Calepine | Squire of Dames | Squire of Dames | Sir Paridell | Sir Paridell | Saint George | Saint George | Sir Triamond | Sir Triamond | Which Cambell | Which Cambell | Whom Calidore. | Whom Calidore.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.903 Photon and Neutron Scattering Spectroscopy and Its Applications in Condensed Matter (MIT) 22.903 Photon and Neutron Scattering Spectroscopy and Its Applications in Condensed Matter (MIT)

Description

The purpose of this course is to discuss modern techniques of generation of x-ray photons and neutrons and then follow with selected applications of newly developed photon and neutron scattering spectroscopic techniques to investigations of properties of condensed matter which are of interest to nuclear engineers. The purpose of this course is to discuss modern techniques of generation of x-ray photons and neutrons and then follow with selected applications of newly developed photon and neutron scattering spectroscopic techniques to investigations of properties of condensed matter which are of interest to nuclear engineers.

Subjects

Nuclear engineering | Nuclear engineering | photon | photon | neutron | neutron | scattering | scattering | spectroscopy | spectroscopy | neutron sources | neutron sources | photon sources | photon sources | neutron scattering theory | neutron scattering theory | light and X-ray scattering theory | light and X-ray scattering theory | linear response theory | linear response theory | inelastic neutron scattering spectroscopy | inelastic neutron scattering spectroscopy | quasielastic neutron scattering spectroscopy | quasielastic neutron scattering spectroscopy | photon correlation spectroscopy | photon correlation spectroscopy | inelastic X-ray scattering spectroscopy | inelastic X-ray scattering spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.010 Neuroscience and Society (MIT) STS.010 Neuroscience and Society (MIT)

Description

This course explores the social relevance of neuroscience, considering how emerging areas of brain research at once reflect and reshape social attitudes and agendas. Topics include brain imaging and popular media; neuroscience of empathy, trust, and moral reasoning; new fields of neuroeconomics and neuromarketing; ethical implications of neurotechnologies such as cognitive enhancement pharmaceuticals; neuroscience in the courtroom; and neuroscientific recasting of social problems such as addiction and violence. Guest lectures by neuroscientists, class discussion, and weekly readings in neuroscience, popular media, and science studies. This course explores the social relevance of neuroscience, considering how emerging areas of brain research at once reflect and reshape social attitudes and agendas. Topics include brain imaging and popular media; neuroscience of empathy, trust, and moral reasoning; new fields of neuroeconomics and neuromarketing; ethical implications of neurotechnologies such as cognitive enhancement pharmaceuticals; neuroscience in the courtroom; and neuroscientific recasting of social problems such as addiction and violence. Guest lectures by neuroscientists, class discussion, and weekly readings in neuroscience, popular media, and science studies.

Subjects

cognitive science | cognitive science | evolutionary psychology | evolutionary psychology | neurobiology | neurobiology | brain imaging | brain imaging | MRI | MRI | CT scan | CT scan | fMRI | fMRI | brain | brain | mind | mind | morality | morality | moral reasoning | moral reasoning | decision making | decision making | intelligence | intelligence | empathy | empathy | trust | trust | religion | religion | love | love | emotion | emotion | gender differences | gender differences | sexuality | sexuality | stress | stress | prejudice | prejudice | attention | attention | psychopharmaceuticals | psychopharmaceuticals | antidepressant | antidepressant | neuroeconomics | neuroeconomics | neuromarketing | neuromarketing | neurotheology | neurotheology | cognitive enhancement | cognitive enhancement | witness | witness | courtroom testimony | courtroom testimony | addiction | addiction | violence | violence | learning | learning | behavior | behavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-STS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.322J Genetic Neurobiology (MIT) 9.322J Genetic Neurobiology (MIT)

Description

This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans. This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.

Subjects

neurobiology | neurobiology | genetics | genetics | bacterial chemoreception | bacterial chemoreception | neurogenomics | neurogenomics | genetic analysis | genetic analysis | axonal pathfinding | axonal pathfinding | neurodevelopment | neurodevelopment | synapse formation | synapse formation | neurogenetics | neurogenetics | higher brain function | higher brain function | neuronal ensembles | neuronal ensembles | molecular analysis | molecular analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Biological Bases of Learning and Memory (MIT) 7.343 Biological Bases of Learning and Memory (MIT)

Description

How does the brain come to learn whether a stimulus is annoying, rewarding or neutral? How does remembering how to ride a bicycle differ from remembering scenes from a movie? In this course, students will explore the concept that learning and memory have a physical basis that can be observed as biochemical, physiological and/or morphological changes to neural tissue. Our goal will be to understand the strategies and techniques biologists use to search for the memory trace: the "holy grail" of modern neuroscience. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interact How does the brain come to learn whether a stimulus is annoying, rewarding or neutral? How does remembering how to ride a bicycle differ from remembering scenes from a movie? In this course, students will explore the concept that learning and memory have a physical basis that can be observed as biochemical, physiological and/or morphological changes to neural tissue. Our goal will be to understand the strategies and techniques biologists use to search for the memory trace: the "holy grail" of modern neuroscience. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interact

Subjects

learning | learning | memory | memory | neural tissue | neural tissue | neuronal connections | neuronal connections | synapse formation | synapse formation | synapse stabilization | synapse stabilization | synaptic transmission | synaptic transmission | synaptic plasticity | synaptic plasticity | neuromodulation | neuromodulation | experience-dependent circuit remodeling | experience-dependent circuit remodeling | neuroscience | neuroscience | pre- and post-synaptic mechanisms | pre- and post-synaptic mechanisms | neurotransmitter release | neurotransmitter release | activity-regulated genes | activity-regulated genes | hippocampus | hippocampus | long-term potentiation | long-term potentiation | long-term depression | long-term depression | cerebellar plasticity | cerebellar plasticity | Non-Associative | Non-Associative | Associative | Associative | cpg15 | cpg15 | experience-dependent synaptic plasticity | experience-dependent synaptic plasticity | perceptual learning | perceptual learning | observational learning | observational learning

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Europe on the Brink? Economic Issues

Description

An economic assessment of the eurozone crisis by former Senior Economic Advisor to the European Commission and Deputy Director of the International Monetary Fund Max Watson. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

europe | eurozone | economics | recession | politics | european union | euro | europe | eurozone | economics | recession | politics | european union | euro | 2012-04-19

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/128995/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata