Searching for evaluation : 182 results found | RSS Feed for this search

1 2 3 4 5 6 7

RES.14-002 Abdul Latif Jameel Poverty Action Lab Executive Training: Evaluating Social Programs 2011 (MIT) RES.14-002 Abdul Latif Jameel Poverty Action Lab Executive Training: Evaluating Social Programs 2011 (MIT)

Description

This five-day program on evaluating social programs will provide a thorough understanding of randomized evaluations and pragmatic step-by-step training for conducting one's own evaluation. While the course focuses on randomized evaluations, many of the topics, such as measuring outcomes and dealing with threats to the validity of an evaluation, are relevant for other methodologies. About the Abdul Latif Jameel Poverty Action Lab J-PAL's goal is to reduce poverty by ensuring that policy is based on scientific evidence. Every day, evidence generated by J-PAL researchers is influencing policy and improving lives, sometimes very directly – for example through the scale-up of effective programs – but also in less direct but equally important ways. To date, our evidence has helped This five-day program on evaluating social programs will provide a thorough understanding of randomized evaluations and pragmatic step-by-step training for conducting one's own evaluation. While the course focuses on randomized evaluations, many of the topics, such as measuring outcomes and dealing with threats to the validity of an evaluation, are relevant for other methodologies. About the Abdul Latif Jameel Poverty Action Lab J-PAL's goal is to reduce poverty by ensuring that policy is based on scientific evidence. Every day, evidence generated by J-PAL researchers is influencing policy and improving lives, sometimes very directly – for example through the scale-up of effective programs – but also in less direct but equally important ways. To date, our evidence has helped

Subjects

randomized evaluation | randomized evaluation | measuring impact | measuring impact | power calculations | power calculations | sample size | sample size | cost effectiveness | cost effectiveness | outcomes | outcomes | indicators | indicators | policy makers | policy makers | program evaluation | program evaluation | evaluation design | evaluation design | theory of change | theory of change | control population | control population

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-RES.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.91 Mechanical Behavior of Plastics (MIT) 3.91 Mechanical Behavior of Plastics (MIT)

Description

This course is aimed at presenting the concepts underlying the response of polymeric materials to applied loads. These will include both the molecular mechanisms involved and the mathematical description of the relevant continuum mechanics. It is dominantly an "engineering" subject, but with an atomistic flavor. It covers the influence of processing and structure on mechanical properties of synthetic and natural polymers: Hookean and entropic elastic deformation, linear viscoelasticity, composite materials and laminates, yield and fracture. This course is aimed at presenting the concepts underlying the response of polymeric materials to applied loads. These will include both the molecular mechanisms involved and the mathematical description of the relevant continuum mechanics. It is dominantly an "engineering" subject, but with an atomistic flavor. It covers the influence of processing and structure on mechanical properties of synthetic and natural polymers: Hookean and entropic elastic deformation, linear viscoelasticity, composite materials and laminates, yield and fracture.

Subjects

plastics; synthetic high polymers; viscoelastic phenomena; viscoelastic and strength properties; mechanical property evaluation; plastics fabrication methods | plastics; synthetic high polymers; viscoelastic phenomena; viscoelastic and strength properties; mechanical property evaluation; plastics fabrication methods | plastics | plastics | synthetic high polymers | synthetic high polymers | viscoelastic phenomena | viscoelastic phenomena | viscoelastic and strength properties | viscoelastic and strength properties | mechanical property evaluation | mechanical property evaluation | plastics fabrication methods | plastics fabrication methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.91J Mechanical Behavior of Plastics (MIT) 3.91J Mechanical Behavior of Plastics (MIT)

Description

Relation among chemical composition, physical structure, and mechanical behavior of plastics or synthetic high polymers. Study of types of polymers; fundamentals of viscoelastic phenomena such as creep, stress relaxation, stress rupture, mechanical damping, impact; effects of chemical composition and structure on viscoelastic and strength properties; methods of mechanical property evaluation. Influences of plastics fabrication methods. Emphasis on recent research techniques and results. Individual laboratory projects investigating problems related to current research. Relation among chemical composition, physical structure, and mechanical behavior of plastics or synthetic high polymers. Study of types of polymers; fundamentals of viscoelastic phenomena such as creep, stress relaxation, stress rupture, mechanical damping, impact; effects of chemical composition and structure on viscoelastic and strength properties; methods of mechanical property evaluation. Influences of plastics fabrication methods. Emphasis on recent research techniques and results. Individual laboratory projects investigating problems related to current research.

Subjects

plastics | | plastics | | synthetic high polymers | | synthetic high polymers | | viscoelastic phenomena | | viscoelastic phenomena | | viscoelastic and strength properties | | viscoelastic and strength properties | | mechanical property evaluation | | mechanical property evaluation | | plastics fabrication methods | plastics fabrication methods | plastics | plastics | synthetic high polymers | synthetic high polymers | viscoelastic phenomena | viscoelastic phenomena | viscoelastic and strength properties | viscoelastic and strength properties | mechanical property evaluation | mechanical property evaluation | 3.91 | 3.91 | 1.593 | 1.593

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.305 Advanced Analytic Methods in Science and Engineering (MIT) 18.305 Advanced Analytic Methods in Science and Engineering (MIT)

Description

Advanced Analytic Methods in Science and Engineering is a comprehensive treatment of the advanced methods of applied mathematics. It was designed to strengthen the mathematical abilities of graduate students and train them to think on their own. Advanced Analytic Methods in Science and Engineering is a comprehensive treatment of the advanced methods of applied mathematics. It was designed to strengthen the mathematical abilities of graduate students and train them to think on their own.

Subjects

elementary methods complex analysis | elementary methods complex analysis | ordinary differential equations | ordinary differential equations | partial differential equations | partial differential equations | expansions around regular irregular singular points | expansions around regular irregular singular points | asymptotic evaluation integrals | asymptotic evaluation integrals | regular perturbations | regular perturbations | WKB method | WKB method | multiple scale method | multiple scale method | boundary-layer techniques. | boundary-layer techniques. | asymptotic evaluation integrals | regular perturbations | asymptotic evaluation integrals | regular perturbations | boundary-layer techniques | boundary-layer techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.831 User Interface Design and Implementation (MIT) 6.831 User Interface Design and Implementation (MIT)

Description

6.831 introduces the principles of user interface development, focusing on three key areas: Design: How to design good user interfaces, starting with human capabilities (including the human information processor model, perception, motor skills, color, attention, and errors) and using those capabilities to drive design techniques: task analysis, user-centered design, iterative design, usability guidelines, interaction styles, and graphic design principles. Implementation: Techniques for building user interfaces, including low-fidelity prototypes, Wizard of Oz, and other prototyping tools; input models, output models, model-view-controller, layout, constraints, and toolkits. Evaluation: Techniques for evaluating and measuring interface usability, including heuristic evaluation, predicti 6.831 introduces the principles of user interface development, focusing on three key areas: Design: How to design good user interfaces, starting with human capabilities (including the human information processor model, perception, motor skills, color, attention, and errors) and using those capabilities to drive design techniques: task analysis, user-centered design, iterative design, usability guidelines, interaction styles, and graphic design principles. Implementation: Techniques for building user interfaces, including low-fidelity prototypes, Wizard of Oz, and other prototyping tools; input models, output models, model-view-controller, layout, constraints, and toolkits. Evaluation: Techniques for evaluating and measuring interface usability, including heuristic evaluation, predicti

Subjects

human-computer interfaces | human-computer interfaces | human capabilities | human capabilities | human information processor | human information processor | perception | perception | Fitts's Law | Fitts's Law | color | color | hearing | hearing | task analysis | task analysis | user-centered design | user-centered design | iterative design | iterative design | low-fidelity prototyping | low-fidelity prototyping | heuristic evaluation | heuristic evaluation | keystroke-level models | keystroke-level models | formative evaluation | formative evaluation | input models | input models | output models | output models | model-view-controller | model-view-controller | toolkits | toolkits | programming project | programming project | GUI | GUI | Java | Java

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.433 Investments (MIT) 15.433 Investments (MIT)

Description

The focus of this course is on financial theory and empirical evidence for making investment decisions. Topics include: portfolio theory; equilibrium models of security prices (including the capital asset pricing model and the arbitrage pricing theory); the empirical behavior of security prices; market efficiency; performance evaluation; and behavioral finance. The focus of this course is on financial theory and empirical evidence for making investment decisions. Topics include: portfolio theory; equilibrium models of security prices (including the capital asset pricing model and the arbitrage pricing theory); the empirical behavior of security prices; market efficiency; performance evaluation; and behavioral finance.

Subjects

Financial theory | Financial theory | empirical evidence | empirical evidence | investment decisions | investment decisions | portfolio theory | portfolio theory | equilibrium models of security prices | equilibrium models of security prices | capital asset pricing model | capital asset pricing model | arbitrage pricing theory | arbitrage pricing theory | empirical behavior of security prices | empirical behavior of security prices | market efficiency | performance evaluation | market efficiency | performance evaluation | market efficiency | market efficiency | performance evaluation | performance evaluation | behavioral finance | behavioral finance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.431 Entrepreneurial Finance (MIT) 15.431 Entrepreneurial Finance (MIT)

Description

This class examines the elements of entrepreneurial finance, focusing on technology-based start-up ventures, and the early stages of company development. It addresses key questions which challenge all entrepreneurs: how much money can and should be raised; when should it be raised and from whom; what is a reasonable valuation of the company; and how funding should be structured. The subject aims to prepare students for these decisions, both as entrepreneurs and venture capitalists. This class examines the elements of entrepreneurial finance, focusing on technology-based start-up ventures, and the early stages of company development. It addresses key questions which challenge all entrepreneurs: how much money can and should be raised; when should it be raised and from whom; what is a reasonable valuation of the company; and how funding should be structured. The subject aims to prepare students for these decisions, both as entrepreneurs and venture capitalists.

Subjects

entrepreneurship; entrepreneurism; accounting; business evaluation; business valuation; financing; venture capital funds; employment; option pricing; futures; corporate finance; deal structure; initial public offerings; IPO | entrepreneurship; entrepreneurism; accounting; business evaluation; business valuation; financing; venture capital funds; employment; option pricing; futures; corporate finance; deal structure; initial public offerings; IPO | entrepreneurship | entrepreneurship | entrepreneurism | entrepreneurism | accounting | accounting | business evaluation | business evaluation | business valuation | business valuation | financing | financing | venture capital funds | venture capital funds | employment | employment | option pricing | option pricing | futures | futures | corporate finance | corporate finance | deal structure | deal structure | initial public offerings | initial public offerings | IPO | IPO | entreprenurial finance | entreprenurial finance | start-up | start-up | development | development | fund raising | fund raising | company valuation | company valuation | exit strategy | exit strategy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Two lectures to introduce the concepts of Intrapreneurship

Description

These two fully scripted lectures are designed to introduce the concepts of intrapreneurship to a class at any level. Each is a scripted PowerPoint presentation with a number of activities. The lecturer will need to decide which activities to include to suit the class.

Subjects

intrapreneurs | innovation | entrepreneurs | networking | design and plan | evaluation | continuing professional development | teaching in the subject area | incorporation of research | evaluation of practice | professional development and evaluation | cpd | omac | #edoroer | ukoer | ukpsf | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Networking Presentation with Verbal Business Card Icebreaker

Description

This resource consists of 18 Power Point slides with accompanying notes titled ‘Networking – a starter session’. The resource introduces key issues and concepts and raises student awareness of the importance of networking. The whole session takes about 20 minutes, but just using slides 11-13 ‘creating a verbal business card' makes a great starter to a session.

Subjects

networking | verbal business card | icebreaker | design and plan | integration of scholarship | evaluation | continuing professional development | teaching in the subject area | incorporation of research | evaluation of practice | professional development and evaluation | cpd | omac | #edoroer | ukoer | ukpsf | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Embedding Business Start-Up in the University Curriculum

Description

This short resource was originally presented as part of the HEA GEES Subject Centre’s project on Enterprise, Skills and Entrepreneurship in the GEES disciplines, and used in Enterprise modules at University of Leeds. It provides a generic introduction for HE staff to the embedding of business start-up learning opportunities into the curriculum. The author considers various approaches, including the development of a whole module, the integration of appropriate materials throughout the curriculum and where in the curriculum such an approach could sit. Other source materials are also suggested.

Subjects

enterprise | business | curriculum development | skills | entrepreneurship | design and plan | integration of scholarship | evaluation | continuing professional development | teaching in the subject area | incorporation of research | evaluation of practice | professional development and evaluation | cpd | #edoroer | omac | ukoer | ukpsf | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

An Intrapreneur’s Story: Education Officer and Senior Ranger

Description

A case example of a park Range/Education Officer working for a local authority is used to let students draw out ideas about how people can influence their workplace, put new ideas in place and develop their business, their job and their career. While this is an example of enterprise within a business the tutor can get students to draw parallels with the skills for entrpreneurship.

Subjects

intrapreneur | innovation | entrepreneurs | case study | design and plan | integration of scholarship | evaluation | continuing professional development | teaching in the subject area | incorporation of research | evaluation of practice | professional development and evaluation | cpd | #edoroer | omac | ukoer | ukpsf | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Selling ideas, an enterprising activity for many modules: the elevator pitch

Description

As an entrepreneurial activity it has its original place in the curriculum in persuading the boss to take on board and possibly fund your idea. The US examples tend to be dominated by marketing people.

Subjects

selling ideas | networking | enterprise | business | design and plan | integration of scholarship | evaluation | continuing professional development | teaching in the subject area | incorporation of research | evaluation of practice | professional development and evaluation | cpd | #edoroer | omac | ukoer | ukpsf | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

You are on your own: Ice Breaker

Description

This resource is popular with students and staff as it uses the premise that students are out of work tomorrow and must create their own employment. Using solo and group work the 20 minute session provides a good ice breaker and way of introducing ideas around entrepreneurship and encouraging students to explore and develop their own enterprising qualities and ideas.

Subjects

business start up | enterprise | skills | design and plan | integration of scholarship | evaluation | continuing professional development | teaching in the subject area | incorporation of research | evaluation of practice | professional development and evaluation | cpd | #edoroer | omac | ukoer | ukpsf | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Exploring the Motivation and Skills of Entrepreneurs

Description

This short resource was originally presented as part of the HEA HEA GEES Subject Centre’s project on Enterprise, Skills and Entrepreneurship in the GEES disciplines. It provides a case study activity which encourages participants to understand how entrepreneurs operate, what motivates them and how they behave. What were the challenges the case study entrepreneures faced, what are their personal qualities?

Subjects

entrepreneurship | motivation | enterprise | business | skills | design and plan | integration of scholarship | evaluation | continuing professional development | teaching in the subject area | incorporation of research | evaluation of practice | professional development and evaluation | cpd | #edoroer | omac | ukoer | ukpsf | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

RES.14-002 Abdul Latif Jameel Poverty Action Lab Executive Training: Evaluating Social Programs 2011 (MIT)

Description

This five-day program on evaluating social programs will provide a thorough understanding of randomized evaluations and pragmatic step-by-step training for conducting one's own evaluation. While the course focuses on randomized evaluations, many of the topics, such as measuring outcomes and dealing with threats to the validity of an evaluation, are relevant for other methodologies. About the Abdul Latif Jameel Poverty Action Lab J-PAL's goal is to reduce poverty by ensuring that policy is based on scientific evidence. Every day, evidence generated by J-PAL researchers is influencing policy and improving lives, sometimes very directly – for example through the scale-up of effective programs – but also in less direct but equally important ways. To date, our evidence has helped

Subjects

randomized evaluation | measuring impact | power calculations | sample size | cost effectiveness | outcomes | indicators | policy makers | program evaluation | evaluation design | theory of change | control population

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.888 Multidisciplinary System Design Optimization (MIT) 16.888 Multidisciplinary System Design Optimization (MIT)

Description

This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers. This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers.

Subjects

optimization | optimization | multidisciplinary design optimization | multidisciplinary design optimization | MDO | MDO | subsystem identification | subsystem identification | interface design | interface design | linear constrained optimization fomulation | linear constrained optimization fomulation | non-linear constrained optimization formulation | non-linear constrained optimization formulation | scalar optimization | scalar optimization | vector optimization | vector optimization | systems engineering | systems engineering | complex systems | complex systems | heuristic search methods | heuristic search methods | tabu search | tabu search | simulated annealing | simulated annealing | genertic algorithms | genertic algorithms | sensitivity | sensitivity | tradeoff analysis | tradeoff analysis | goal programming | goal programming | isoperformance | isoperformance | pareto optimality | pareto optimality | flowchart | flowchart | design vector | design vector | simulation model | simulation model | objective vector | objective vector | input | input | discipline | discipline | output | output | coupling | coupling | multiobjective optimization | multiobjective optimization | optimization algorithms | optimization algorithms | tradespace exploration | tradespace exploration | numerical techniques | numerical techniques | direct methods | direct methods | penalty methods | penalty methods | heuristic techniques | heuristic techniques | SA | SA | GA | GA | approximation methods | approximation methods | sensitivity analysis | sensitivity analysis | isoperformace | isoperformace | output evaluation | output evaluation | MSDO framework | MSDO framework

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.831 User Interface Design and Implementation (MIT)

Description

6.831 introduces the principles of user interface development, focusing on three key areas: Design: How to design good user interfaces, starting with human capabilities (including the human information processor model, perception, motor skills, color, attention, and errors) and using those capabilities to drive design techniques: task analysis, user-centered design, iterative design, usability guidelines, interaction styles, and graphic design principles. Implementation: Techniques for building user interfaces, including low-fidelity prototypes, Wizard of Oz, and other prototyping tools; input models, output models, model-view-controller, layout, constraints, and toolkits. Evaluation: Techniques for evaluating and measuring interface usability, including heuristic evaluation, predicti

Subjects

human-computer interfaces | human capabilities | human information processor | perception | Fitts's Law | color | hearing | task analysis | user-centered design | iterative design | low-fidelity prototyping | heuristic evaluation | keystroke-level models | formative evaluation | input models | output models | model-view-controller | toolkits | programming project | GUI | Java

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.433 Investments (MIT)

Description

The focus of this course is on financial theory and empirical evidence for making investment decisions. Topics include: portfolio theory; equilibrium models of security prices (including the capital asset pricing model and the arbitrage pricing theory); the empirical behavior of security prices; market efficiency; performance evaluation; and behavioral finance.

Subjects

Financial theory | empirical evidence | investment decisions | portfolio theory | equilibrium models of security prices | capital asset pricing model | arbitrage pricing theory | empirical behavior of security prices | market efficiency | performance evaluation | market efficiency | performance evaluation | behavioral finance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Machine Learning I Machine Learning I

Description

The main goals of this course are: to introduce the basic concepts of Machine Learning and Big Data Machine Learning; to describe the main areas, techniques, and processes in Machine Learning; to introduce some of the main tools in (Big Data) Machine Learning The main goals of this course are: to introduce the basic concepts of Machine Learning and Big Data Machine Learning; to describe the main areas, techniques, and processes in Machine Learning; to introduce some of the main tools in (Big Data) Machine Learning

Subjects

Nearest neighbours | Nearest neighbours | Models for regression | Models for regression | MLLIB | MLLIB | Gradient Boosting | Gradient Boosting | Bagging | Bagging | Hyper-parameter optimization | Hyper-parameter optimization | Pyspark | Pyspark | Large scale machine learning | Large scale machine learning | Boosting | Boosting | Spark | Spark | 2016 | 2016 | Random Forests | Random Forests | Machine learning | Machine learning | Decision / regression trees and rules | Decision / regression trees and rules | Feature selection | Feature selection | Model evaluation | Model evaluation | Feature transformation | Feature transformation | ML | ML | Basic pipeline | Basic pipeline | Models for classification | Models for classification | MapReduce | MapReduce | C. Computacion e Inteligencia Artificial | C. Computacion e Inteligencia Artificial | Dimensionality reduction | Dimensionality reduction

License

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/

Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Evaluation

Description

This PowerPoint presentation considers why to evaluate and different approaches to evaluation

Subjects

ukoer | evaluation | evaluation techniques | Education | X000 | EDUCATION / TRAINING / TEACHING | G

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.381 Statistical Method in Economics (MIT) 14.381 Statistical Method in Economics (MIT)

Description

This course is divided into two sections, Part I and Part II.  Part I provides an introduction to statistical theory and can be found by visiting 14.381 Fall 2013. Part II, found here, prepares students for the remainder of the econometrics sequence. The emphasis of the course is to understand the basic principles of statistical theory. A brief review of probability will be given; however, this material is assumed knowledge. The course also covers basic regression analysis. Topics covered include probability, random samples, asymptotic methods, point estimation, evaluation of estimators, Cramer-Rao theorem, hypothesis tests, Neyman Pearson lemma, Likelihood Ratio test, interval estimation, best linear predictor, best linear approximation, conditional expectation function, buil This course is divided into two sections, Part I and Part II.  Part I provides an introduction to statistical theory and can be found by visiting 14.381 Fall 2013. Part II, found here, prepares students for the remainder of the econometrics sequence. The emphasis of the course is to understand the basic principles of statistical theory. A brief review of probability will be given; however, this material is assumed knowledge. The course also covers basic regression analysis. Topics covered include probability, random samples, asymptotic methods, point estimation, evaluation of estimators, Cramer-Rao theorem, hypothesis tests, Neyman Pearson lemma, Likelihood Ratio test, interval estimation, best linear predictor, best linear approximation, conditional expectation function, buil

Subjects

statistical theory | statistical theory | econometrics | econometrics | regression analysis | regression analysis | probability | probability | random samples | random samples | asymptotic methods | asymptotic methods | point estimation | point estimation | evaluation of estimators | evaluation of estimators | Cramer-Rao theorem | Cramer-Rao theorem | hypothesis tests | hypothesis tests | Neyman Pearson lemma | Neyman Pearson lemma | Likelihood Ratio test | Likelihood Ratio test | interval estimation | interval estimation | best linear predictor | best linear predictor | best linear approximation | best linear approximation | conditional expectation function | conditional expectation function | building functional forms | building functional forms | regression algebra | regression algebra | Gauss-Markov optimality | Gauss-Markov optimality | finite-sample inference | finite-sample inference | consistency | consistency | asymptotic normality | asymptotic normality | heteroscedasticity | heteroscedasticity | autocorrelation | autocorrelation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.32 Econometrics (MIT) 14.32 Econometrics (MIT)

Description

Introduction to econometric models and techniques, simultaneous equations, program evaluation, emphasizing regression. Advanced topics include instrumental variables, panel data methods, measurement error, and limited dependent variable models. May not count toward HASS requirement. Introduction to econometric models and techniques, simultaneous equations, program evaluation, emphasizing regression. Advanced topics include instrumental variables, panel data methods, measurement error, and limited dependent variable models. May not count toward HASS requirement.

Subjects

econometrics | econometrics | statistical methods | statistical methods | differences-in-differences | differences-in-differences | 2SLS | 2SLS | FGLS | FGLS | serial correlation | serial correlation | IV | IV | two-stage least squares | two-stage least squares | multivariate regression | multivariate regression | simultaneous equations | simultaneous equations | econometric models | econometric models | program evaluation | program evaluation | linear regression | linear regression | instrumental variables | instrumental variables | panel data methods | panel data methods | measurement error | measurement error | limited dependent variable models | limited dependent variable models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Logframe planning Logframe planning

Description

As a way of thinking about projects, Logical Framework Analysis helps to focus on some key questions during the project design process. This free course, Logframe planning, improves your understanding of and practice with the structure of the logframe matrix using an animated overview with voice-over commentary followed by interactive questions relating to using the matrix. First published on Fri, 01 Apr 2016 as Logframe planning. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 As a way of thinking about projects, Logical Framework Analysis helps to focus on some key questions during the project design process. This free course, Logframe planning, improves your understanding of and practice with the structure of the logframe matrix using an animated overview with voice-over commentary followed by interactive questions relating to using the matrix. First published on Fri, 01 Apr 2016 as Logframe planning. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 First published on Fri, 01 Apr 2016 as Logframe planning. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 First published on Fri, 01 Apr 2016 as Logframe planning. To find out more visit The Open University's Openlearn website. Creative-Commons 2016

Subjects

Environmental Decision Making | Environmental Decision Making | project management | project management | evaluation | evaluation | TU870_2 | TU870_2

License

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

Site sourced from

http://www.open.edu/openlearn/rss/try-content

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata