Searching for extension : 149 results found | RSS Feed for this search

1 2 3 4 5 6

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.082J Network Optimization (MIT) 15.082J Network Optimization (MIT)

Description

15.082J/6.855J is an H-level graduate subject in the theory and practice of network flows and its extensions. Network flow problems form a subclass of linear programming problems with applications to transportation, logistics, manufacturing, computer science, project management, finance as well as a number of other domains. This subject will survey some of the applications of network flows and focus on key special cases of network flow problems including the following: the shortest path problem, the maximum flow problem, the minimum cost flow problem, and the multi-commodity flow problem. 15.082J/6.855J is an H-level graduate subject in the theory and practice of network flows and its extensions. Network flow problems form a subclass of linear programming problems with applications to transportation, logistics, manufacturing, computer science, project management, finance as well as a number of other domains. This subject will survey some of the applications of network flows and focus on key special cases of network flow problems including the following: the shortest path problem, the maximum flow problem, the minimum cost flow problem, and the multi-commodity flow problem.

Subjects

network flows | network flows | extensions | extensions | network flow problems | network flow problems | transportation | transportation | logistics | logistics | manufacturing | manufacturing | computer science | computer science | project management | project management | finance | finance | the shortest path problem | the shortest path problem | the maximum flow problem | the maximum flow problem | the minimum cost flow problem | the minimum cost flow problem | the multi-commodity flow problem | the multi-commodity flow problem | communication | communication | systems | systems | applications | applications | efficiency | efficiency | algorithms | algorithms | traffic | traffic | equilibrium | equilibrium | design | design | mplementation | mplementation | linear programming | linear programming | implementation | implementation | computer | computer | science | science | linear | linear | programming | programming | network | network | flow | flow | problems | problems | project | project | management | management | maximum | maximum | minimum | minimum | cost | cost | multi-commodity | multi-commodity | shortest | shortest | path | path | 15.082 | 15.082 | 6.855 | 6.855

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.083J Integer Programming and Combinatorial Optimization (MIT) 15.083J Integer Programming and Combinatorial Optimization (MIT)

Description

The course is a comprehensive introduction to the theory, algorithms and applications of integer optimization and is organized in four parts: formulations and relaxations, algebra and geometry of integer optimization, algorithms for integer optimization, and extensions of integer optimization. The course is a comprehensive introduction to the theory, algorithms and applications of integer optimization and is organized in four parts: formulations and relaxations, algebra and geometry of integer optimization, algorithms for integer optimization, and extensions of integer optimization.

Subjects

theory | theory | algorithms | algorithms | integer optimization | integer optimization | formulations and relaxations | formulations and relaxations | algebra and geometry of integer optimization | algebra and geometry of integer optimization | algorithms for integer optimization | algorithms for integer optimization | extensions of integer optimization | extensions of integer optimization | 15.083 | 15.083

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.702 Algebra II (MIT) 18.702 Algebra II (MIT)

Description

This undergraduate level course follows Algebra I. Topics include group representations, rings, ideals, fields, polynomial rings, modules, factorization, integers in quadratic number fields, field extensions, and Galois theory. This undergraduate level course follows Algebra I. Topics include group representations, rings, ideals, fields, polynomial rings, modules, factorization, integers in quadratic number fields, field extensions, and Galois theory.

Subjects

Sylow theorems | Sylow theorems | Group Representations | Group Representations | definitions | definitions | unitary representations | unitary representations | characters | characters | Schur's Lemma | Schur's Lemma | Rings: Basic Definitions | Rings: Basic Definitions | homomorphisms | homomorphisms | fractions | fractions | Factorization | Factorization | unique factorization | unique factorization | Gauss' Lemma | Gauss' Lemma | explicit factorization | explicit factorization | maximal ideals | maximal ideals | Quadratic Imaginary Integers | Quadratic Imaginary Integers | Gauss Primes | Gauss Primes | quadratic integers | quadratic integers | ideal factorization | ideal factorization | ideal classes | ideal classes | Linear Algebra over a Ring | Linear Algebra over a Ring | free modules | free modules | integer matrices | integer matrices | generators and relations | generators and relations | structure of abelian groups | structure of abelian groups | Rings: Abstract Constructions | Rings: Abstract Constructions | relations in a ring | relations in a ring | adjoining elements | adjoining elements | Fields: Field Extensions | Fields: Field Extensions | algebraic elements | algebraic elements | degree of field extension | degree of field extension | ruler and compass | ruler and compass | symbolic adjunction | symbolic adjunction | finite fields | finite fields | Fields: Galois Theory | Fields: Galois Theory | the main theorem | the main theorem | cubic equations | cubic equations | symmetric functions | symmetric functions | primitive elements | primitive elements | quartic equations | quartic equations | quintic equations | quintic equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.702 Algebra II (MIT) 18.702 Algebra II (MIT)

Description

The course covers group theory and its representations, and focuses on the Sylow theorem, Schur's lemma, and proof of the orthogonality relations. It also analyzes the rings, the factorization processes, and the fields. Topics such as the formal construction of integers and polynomials, homomorphisms and ideals, the Gauss' lemma, quadratic imaginary integers, Gauss primes, and finite and function fields are discussed in detail. The course covers group theory and its representations, and focuses on the Sylow theorem, Schur's lemma, and proof of the orthogonality relations. It also analyzes the rings, the factorization processes, and the fields. Topics such as the formal construction of integers and polynomials, homomorphisms and ideals, the Gauss' lemma, quadratic imaginary integers, Gauss primes, and finite and function fields are discussed in detail.

Subjects

Sylow theorems | Sylow theorems | Group Representations | Group Representations | definitions | definitions | unitary representations | unitary representations | characters | characters | Schur's Lemma | Schur's Lemma | Rings: Basic Definitions | Rings: Basic Definitions | homomorphisms | homomorphisms | fractions | fractions | Factorization | Factorization | unique factorization | unique factorization | Gauss' Lemma | Gauss' Lemma | explicit factorization | explicit factorization | maximal ideals | maximal ideals | Quadratic Imaginary Integers | Quadratic Imaginary Integers | Gauss Primes | Gauss Primes | quadratic integers | quadratic integers | ideal factorization | ideal factorization | ideal classes | ideal classes | Linear Algebra over a Ring | Linear Algebra over a Ring | free modules | free modules | integer matrices | integer matrices | generators and relations | generators and relations | structure of abelian groups | structure of abelian groups | Rings: Abstract Constructions | Rings: Abstract Constructions | relations in a ring | relations in a ring | adjoining elements | adjoining elements | Fields: Field Extensions | Fields: Field Extensions | algebraic elements | algebraic elements | degree of field extension | degree of field extension | ruler and compass | ruler and compass | symbolic adjunction | symbolic adjunction | finite fields | finite fields | Fields: Galois Theory | Fields: Galois Theory | the main theorem | the main theorem | cubic equations | cubic equations | symmetric functions | symmetric functions | primitive elements | primitive elements | quartic equations | quartic equations | quintic equations | quintic equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.702 Algebra II (MIT) 18.702 Algebra II (MIT)

Description

This undergraduate level course follows Algebra I. Topics include group representations, rings, ideals, fields, polynomial rings, modules, factorization, integers in quadratic number fields, field extensions, and Galois theory. This undergraduate level course follows Algebra I. Topics include group representations, rings, ideals, fields, polynomial rings, modules, factorization, integers in quadratic number fields, field extensions, and Galois theory.

Subjects

Sylow theorems | Sylow theorems | Group Representations | Group Representations | definitions | definitions | unitary representations | unitary representations | characters | characters | Schur's Lemma | Schur's Lemma | Rings: Basic Definitions | Rings: Basic Definitions | homomorphisms | homomorphisms | fractions | fractions | Factorization | Factorization | unique factorization | unique factorization | Gauss' Lemma | Gauss' Lemma | explicit factorization | explicit factorization | maximal ideals | maximal ideals | Quadratic Imaginary Integers | Quadratic Imaginary Integers | Gauss Primes | Gauss Primes | quadratic integers | quadratic integers | ideal factorization | ideal factorization | ideal classes | ideal classes | Linear Algebra over a Ring | Linear Algebra over a Ring | free modules | free modules | integer matrices | integer matrices | generators and relations | generators and relations | structure of abelian groups | structure of abelian groups | Rings: Abstract Constructions | Rings: Abstract Constructions | relations in a ring | relations in a ring | adjoining elements | adjoining elements | Fields: Field Extensions | Fields: Field Extensions | algebraic elements | algebraic elements | degree of field extension | degree of field extension | ruler and compass | ruler and compass | symbolic adjunction | symbolic adjunction | finite fields | finite fields | Fields: Galois Theory | Fields: Galois Theory | the main theorem | the main theorem | cubic equations | cubic equations | symmetric functions | symmetric functions | primitive elements | primitive elements | quartic equations | quartic equations | quintic equations | quintic equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Proposed plan for the extension. Discovery Museum

Description

The Co-op had plans to extend its building in 1912 and create a furniture warehouse. It was proposed that a mirror image of the existing building be built thus doubling the size of the structure. The planning permission was granted in 1915, but due to the decline in demand for goods following the outbreak of war, it was never built. (Copyright) We're happy for you to share this digital image within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email claire.ross@twmuseums.org.uk

Subjects

worldwarone | worlife1914 | twamvenues | buildingplan | colour | extension | buildingextension | discoverymuseum | 1912 | coop | furniturewarehouse | mirrorimage | existing | building | interesting | structure | frame | size | planningpermission | 1915 | ww1 | outbreak | war | neverbuilt | precisiondrawing | scale | layout | information | text | number | description | stamp | ink | identification | walls | glass | windows | doorway | pole | heritagebuilding | pillar | platform | striking | abstract | industrial | paper | letter | words

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Junior Extension series showing how a child can help in the home. No date.

Description

Collection: Human Ecology Historical Photographs Title: Junior Extension series showing how a child can help in the home. No date. Collection #23-2-749, item PR-JE-39 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w3k There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | unknownyear | culidentifier:value=prje39

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Junior Extension series showing how a child can help in the home. No date.

Description

Collection: Human Ecology Historical Photographs Title: Junior Extension series showing how a child can help in the home. No date. Collection #23-2-749, item PR-JE-38 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w3j There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | unknownyear | culidentifier:value=prje38

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Junior Extension series showing how a child can help in the home. No date.

Description

Collection: Human Ecology Historical Photographs Title: Junior Extension series showing how a child can help in the home. No date. Collection #23-2-749, item PR-JE-37 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w3h There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | unknownyear | culidentifier:value=prje37

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Junior Extension series showing how a child can help in the home. No date.

Description

Collection: Human Ecology Historical Photographs Title: Junior Extension series showing how a child can help in the home. No date. Collection #23-2-749, item PR-JE-36 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w3g There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | unknownyear | culidentifier:value=prje36

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Junior Extension series showing how a child can help in the home. No date.

Description

Collection: Human Ecology Historical Photographs Title: Junior Extension series showing how a child can help in the home. No date. Collection #23-2-749, item PR-JE-35 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w3f There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | unknownyear | culidentifier:value=prje35

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Junior Extension series showing how a child can help in the home. No date.

Description

Collection: Human Ecology Historical Photographs Title: Junior Extension series showing how a child can help in the home. No date. Collection #23-2-749, item PR-JE-34 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w3d There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | unknownyear | culidentifier:value=prje34

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Junior Extension foods project. Not dated, but uniforms and posters in background suggest 1920's.

Description

Collection: Human Ecology Historical Photographs Title: Junior Extension foods project. Not dated, but uniforms and posters in background suggest 1920's. Collection #23-2-749, item PR-JE-33 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w3c There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | culidentifier:value=prje33

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lineup of girls wearing variety of garments made from the same pattern, in a ...

Description

Collection: Human Ecology Historical Photographs Title: Lineup of girls wearing variety of garments made from the same pattern, in a junior Extension clothing project. Date is around 1920. Troy photo. Collection #23-2-749, item PR-JE-11 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w2g There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | culidentifier:value=prje11

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Uniform for junior Extension in foods. Photo taken by Troy June 4, 1920, for ...

Description

Collection: Human Ecology Historical Photographs Title: Uniform for junior Extension in foods. Photo taken by Troy June 4, 1920, for Bertram for use in the Extension Service News in July 1920. Collection #23-2-749, item PR-JE-10 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w2f There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | culidentifier:value=prje10

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

General utility apron suitable for junior Extension project. Photo taken by Troy in December ...

Description

Collection: Human Ecology Historical Photographs Title: General utility apron suitable for junior Extension project. Photo taken by Troy in December 1918 for Miss McNeal for Bulletin J-1, p.29. Collection #23-2-749, item PR-JE-09 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w2d There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | culidentifier:value=prje09

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Junior Extension in foods: Posters used in junior Extension foods projects. Photos taken by ...

Description

Collection: Human Ecology Historical Photographs Title: Junior Extension in foods: Posters used in junior Extension foods projects. Photos taken by Troy in 1920 for Miss McNeal for Bulletin J-7, p.l26. Collection #23-2-749, item PR-JE-08 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w2c There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | culidentifier:value=prje08

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Junior Extension in foods: Posters used in junior Extension foods projects. Photos taken by ...

Description

Collection: Human Ecology Historical Photographs Title: Junior Extension in foods: Posters used in junior Extension foods projects. Photos taken by Troy in 1920 for Miss McNeal for Bulletin J-7, p.l26. Collection #23-2-749, item PR-JE-07 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w2b There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | culidentifier:value=prje07

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Four lively children eating at a table on the deck over the home economics ...

Description

Collection: Human Ecology Historical Photographs Title: Four lively children eating at a table on the deck over the home economics cafeteria. Caption reads: ''Junior project workers learn the value of milk in the diet especially for children.'' Used in Bulletin J-7, p.78, Fig. 25. Date is May 1920. Collection #23-2-749, item PR-JE-06 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w29 There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | culidentifier:value=prje06

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

School lunch cabinet, December 1918. Taken by Troy for Miss McNeal for Bulletin J-7, p.125.

Description

Collection: Human Ecology Historical Photographs Title: School lunch cabinet, December 1918. Taken by Troy for Miss McNeal for Bulletin J-7, p.125. Collection #23-2-749, item PR-JE-05 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w28 There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | culidentifier:value=prje05

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Junior Extension in foods. Photo taken by Troy for Miss McNeal in December 1918, ...

Description

Collection: Human Ecology Historical Photographs Title: Junior Extension in foods. Photo taken by Troy for Miss McNeal in December 1918, and used as the cover illustration for Bulletin J- 7, ''First Lessons in Food Study.'' Collection #23-2-749, item PR-JE-04 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w27 There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | culidentifier:value=prje04

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Junior Extension in foods: Two girls canning carrots. Date is around 1915-18.

Description

Collection: Human Ecology Historical Photographs Title: Junior Extension in foods: Two girls canning carrots. Date is around 1915-18. Collection #23-2-749, item PR-JE-03 Div. Rare & Manuscript Collections, Cornell University Library Persistent URI: hdl.handle.net/1813.001/5w26 There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | homeeconomics | internationalnationalstateandlocalresearchextensionandoutreach | juniorextension | culidentifier:value=prje03

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata