Searching for extract : 56 results found | RSS Feed for this search

1 2

SP.287 Kitchen Chemistry (MIT) SP.287 Kitchen Chemistry (MIT)

Description

This seminar is designed to be an experimental and hands-on approach to applied chemistry (as seen in cooking). Cooking may be the oldest and most widespread application of chemistry and recipes may be the oldest practical result of chemical research. We shall do some cooking experiments to illustrate some chemical principles, including extraction, denaturation, and phase changes. This seminar is designed to be an experimental and hands-on approach to applied chemistry (as seen in cooking). Cooking may be the oldest and most widespread application of chemistry and recipes may be the oldest practical result of chemical research. We shall do some cooking experiments to illustrate some chemical principles, including extraction, denaturation, and phase changes.

Subjects

cooking | cooking | food | food | chemistry | chemistry | experiment | experiment | extraction | extraction | denaturation | denaturation | phase change | phase change | capsicum | capsicum | biochemistry | biochemistry | chocolate | chocolate | cheese | cheese | yeast | yeast | recipe | recipe | jam | jam | pectin | pectin | enzyme | enzyme | dairy | dairy | molecular gastronomy | molecular gastronomy | salt | salt | colloid | colloid | stability | stability | liquid nitrogen | liquid nitrogen | ice cream | ice cream | biology | biology | microbiology | microbiology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.391J Sustainable Energy (MIT) 10.391J Sustainable Energy (MIT)

Description

This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the

Subjects

Assessment of energy systems | Assessment of energy systems | resources | resources | extraction | extraction | conversion | conversion | and end-use | and end-use | regional and global energy needs | regional and global energy needs | 21st century | 21st century | sustainable manner | sustainable manner | renewable and conventional energy technologies | renewable and conventional energy technologies | biomass energy | biomass energy | fossil fuels | fossil fuels | geothermal energy | geothermal energy | nuclear power | nuclear power | wind power | wind power | solar energy | solar energy | hydrogen fuel | hydrogen fuel | fusion energy | fusion energy | analysis of energy technology systems | analysis of energy technology systems | political | political | social | social | economic | economic | environment | environment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Industrial utilization of medicinal and aromatic plants Industrial utilization of medicinal and aromatic plants

Description

Medicinal aromatic plants belong to a big plant group with a great interest due to its pharmaceutical, cosmetic and nutritional application. In addition, they are also an alternative to traditional crop with species in high demand at the current international market. It is expected to provide basic knowledge and skills related to production and chemical features of essences and extracts from local plants in Iberian Peninsula. The main purpose of this course is that students have an approach to economical importance, uses, botany and harvested processes of the most significant medicinal aromatic and seasoning specie plants. The objectives of this course are: * To classify and identify aromatic plant, seasonings and medicinal plant. * To understand cultivation techniques and effe Medicinal aromatic plants belong to a big plant group with a great interest due to its pharmaceutical, cosmetic and nutritional application. In addition, they are also an alternative to traditional crop with species in high demand at the current international market. It is expected to provide basic knowledge and skills related to production and chemical features of essences and extracts from local plants in Iberian Peninsula. The main purpose of this course is that students have an approach to economical importance, uses, botany and harvested processes of the most significant medicinal aromatic and seasoning specie plants. The objectives of this course are: * To classify and identify aromatic plant, seasonings and medicinal plant. * To understand cultivation techniques and effe

Subjects

Ingeniería Agroforestal | Ingeniería Agroforestal | medicinal plants | medicinal plants | aromatic plants | aromatic plants | extracts | extracts | active principles | active principles | essential oils | essential oils

License

Copyright 2009, by the Contributing Authors http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.upm.es/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

June McNeil works on extracting honey from combs - Apalachicola June McNeil works on extracting honey from combs - Apalachicola

Description

Subjects

florida | florida | apalachicola | apalachicola | honeyextracting | honeyextracting | honeycombs | honeycombs | junemcneil | junemcneil | beekeepers | beekeepers

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.SP.287 Kitchen Chemistry (MIT) ES.SP.287 Kitchen Chemistry (MIT)

Description

This seminar is designed to be an experimental and hands-on approach to applied chemistry (as seen in cooking). Cooking may be the oldest and most widespread application of chemistry and recipes may be the oldest practical result of chemical research. We shall do some cooking experiments to illustrate some chemical principles, including extraction, denaturation, and phase changes. This seminar is designed to be an experimental and hands-on approach to applied chemistry (as seen in cooking). Cooking may be the oldest and most widespread application of chemistry and recipes may be the oldest practical result of chemical research. We shall do some cooking experiments to illustrate some chemical principles, including extraction, denaturation, and phase changes.

Subjects

cooking | cooking | food | food | chemistry | chemistry | experiment | experiment | extraction | extraction | denaturation | denaturation | phase change | phase change | capsicum | capsicum | biochemistry | biochemistry | chocolate | chocolate | cheese | cheese | yeast | yeast | recipe | recipe | jam | jam | pectin | pectin | enzyme | enzyme | dairy | dairy | molecular gastronomy | molecular gastronomy | salt | salt | colloid | colloid | stability | stability | liquid nitrogen | liquid nitrogen | ice cream | ice cream | biology | biology | microbiology | microbiology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.913 Pattern Recognition for Machine Vision (MIT) 9.913 Pattern Recognition for Machine Vision (MIT)

Description

The applications of pattern recognition techniques to problems of machine vision is the main focus for this course. Topics covered include, an overview of problems of machine vision and pattern classification, image formation and processing, feature extraction from images, biological object recognition, bayesian decision theory, and clustering. The applications of pattern recognition techniques to problems of machine vision is the main focus for this course. Topics covered include, an overview of problems of machine vision and pattern classification, image formation and processing, feature extraction from images, biological object recognition, bayesian decision theory, and clustering.

Subjects

comonent analysis | comonent analysis | PCA | PCA | ICA | ICA | fourier analysis | fourier analysis | vision | vision | machine vision | machine vision | pattern matching | pattern matching | pattern analysis | pattern analysis | pattern recognition | pattern recognition | scene analysis | scene analysis | tracking | tracking | feature extraction | feature extraction | color | color | color space | color space | clustering | clustering | bayesian decisions | bayesian decisions | gesture recognition | gesture recognition | action recognition | action recognition | image processing | image processing | image formation | image formation | density estimation | density estimation | classification | classification | morphable models | morphable models | component analysis | component analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.301 Chemistry Laboratory Techniques (MIT) 5.301 Chemistry Laboratory Techniques (MIT)

Description

This course is an intensive introduction to the techniques of experimental chemistry and gives first year students an opportunity to learn and master the basic chemistry lab techniques for carrying out experiments. Students who successfully complete the course and obtain a "Competent Chemist" (CC) or "Expert Experimentalist" (EE) rating are likely to secure opportunities for research work in a chemistry lab at MIT. Acknowledgements The laboratory manual and materials for this course were prepared by Dr. Katherine J. Franz and Dr. Kevin M. Shea with the assistance of Professors Rick L. Danheiser and Timothy M. Swager. Materials have been revised by Dr. J. Haseltine, Dr. Kevin M. Shea, and Dr. Sarah A. Tabacco. WARNING NOTICE The experiments described in these materials a This course is an intensive introduction to the techniques of experimental chemistry and gives first year students an opportunity to learn and master the basic chemistry lab techniques for carrying out experiments. Students who successfully complete the course and obtain a "Competent Chemist" (CC) or "Expert Experimentalist" (EE) rating are likely to secure opportunities for research work in a chemistry lab at MIT. Acknowledgements The laboratory manual and materials for this course were prepared by Dr. Katherine J. Franz and Dr. Kevin M. Shea with the assistance of Professors Rick L. Danheiser and Timothy M. Swager. Materials have been revised by Dr. J. Haseltine, Dr. Kevin M. Shea, and Dr. Sarah A. Tabacco. WARNING NOTICE The experiments described in these materials a

Subjects

chemistry | chemistry | experiment | experiment | laboratory techniques | laboratory techniques | purification | purification | transfer and extraction | transfer and extraction | column chromatography | column chromatography | protein assays | protein assays | error analysis | error analysis | NMR | NMR | IR | IR | gas chromatography | gas chromatography | spectroscopy | spectroscopy | UV-Vis | UV-Vis | experimental chemistry | experimental chemistry | original research projects | original research projects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.445 Separation Processes for Biochemical Products (MIT) 10.445 Separation Processes for Biochemical Products (MIT)

Description

This course serves as an introduction to the fundamental principles of separation operations for the recovery of products from biological processes, membrane filtration, chromatography, centrifugation, cell disruption, extraction, and process design. This course was last taught during the regular school year in the Spring semester of 1999, but has been a part of the MIT Technology and Development Program (TDP) at the Malaysia University of Science and Technology (MUST), as well as at MIT's Professional Institute in more recent years. This course serves as an introduction to the fundamental principles of separation operations for the recovery of products from biological processes, membrane filtration, chromatography, centrifugation, cell disruption, extraction, and process design. This course was last taught during the regular school year in the Spring semester of 1999, but has been a part of the MIT Technology and Development Program (TDP) at the Malaysia University of Science and Technology (MUST), as well as at MIT's Professional Institute in more recent years.

Subjects

separation operations | separation operations | recovery of products from biological processes | recovery of products from biological processes | membrane filtration | membrane filtration | chromatography | chromatography | centrifugation | centrifugation | cell disruption | cell disruption | extraction | extraction | process design | process design | downstream processing | downstream processing | biochemical product recovery | biochemical product recovery | modes of recovery and purification | modes of recovery and purification | biochemical engineering | biochemical engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.722J Brain Mechanisms for Hearing and Speech (MIT) HST.722J Brain Mechanisms for Hearing and Speech (MIT)

Description

An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds. An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds.

Subjects

HST.722 | HST.722 | 9.044 | 9.044 | separation operations | separation operations | recovery of products from biological processes | recovery of products from biological processes | membrane filtration | membrane filtration | chromatography | chromatography | centrifugation | centrifugation | cell disruption | cell disruption | extraction | extraction | process design | process design | downstream processing | downstream processing | biochemical product recovery | biochemical product recovery | modes of recovery and purification | modes of recovery and purification | biochemical engineering | biochemical engineering | hearing | hearing | speech | speech | auditory brainstem | auditory brainstem | auditory cortex | auditory cortex | auditory reflexes | auditory reflexes | descending systems | descending systems | human auditory system | human auditory system | speech motor control | speech motor control | auditory learning | auditory learning | cortical representation | cortical representation | dorsal cochlear nucleus | dorsal cochlear nucleus | neural coding | neural coding | thalamo-cortical organization | thalamo-cortical organization | thalamo-cortical processing | thalamo-cortical processing | audio-visual integration | audio-visual integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.881 Natural Language Processing (MIT) 6.881 Natural Language Processing (MIT)

Description

This course is a graduate level introduction to natural language processing, the primary concern of which is the study of human language from a computational perspective.The class will cover models at the level of syntactic, semantic and discourse processing. The emphasis will be on corpus-based methods and algorithms, such as Hidden Markov Models and probabilistic context free grammars. We will discuss the use of these methods and models in a variety of applications including syntactic parsing, information extraction, statistical machine translation, and summarization.This subject qualifies as an Artificial Intelligence and Applications concentration subject.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .gz and .tar This course is a graduate level introduction to natural language processing, the primary concern of which is the study of human language from a computational perspective.The class will cover models at the level of syntactic, semantic and discourse processing. The emphasis will be on corpus-based methods and algorithms, such as Hidden Markov Models and probabilistic context free grammars. We will discuss the use of these methods and models in a variety of applications including syntactic parsing, information extraction, statistical machine translation, and summarization.This subject qualifies as an Artificial Intelligence and Applications concentration subject.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .gz and .tar

Subjects

syntactic models | syntactic models | semantic models | semantic models | discourse processing models | discourse processing models | corpus-based methods | corpus-based methods | algorithms | algorithms | Hidden Markov Models | Hidden Markov Models | probabilistic context free grammars | probabilistic context free grammars | syntactic parsing | syntactic parsing | information extraction | information extraction | statistical machine translation | statistical machine translation | summarization | summarization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.34 Waste Containment and Remediation Technology (MIT) 1.34 Waste Containment and Remediation Technology (MIT)

Description

1.34 focuses on the geotechnical aspects of hazardous waste management, with specific emphasis on the design of land-based waste containment structures and hazardous waste remediation. Topics include: introduction to hazardous waste, definition of hazardous waste, regulatory requirements, waste characteristics, geo-chemistry, and contaminant transport; the design and operation of waste containment structures, landfills, impoundments, and mine-waste disposal; the characterization and remediation of contaminated sites, the superfund law, preliminary site assessment, site investigation techniques, and remediation technologies; and monitoring requirements. 1.34 focuses on the geotechnical aspects of hazardous waste management, with specific emphasis on the design of land-based waste containment structures and hazardous waste remediation. Topics include: introduction to hazardous waste, definition of hazardous waste, regulatory requirements, waste characteristics, geo-chemistry, and contaminant transport; the design and operation of waste containment structures, landfills, impoundments, and mine-waste disposal; the characterization and remediation of contaminated sites, the superfund law, preliminary site assessment, site investigation techniques, and remediation technologies; and monitoring requirements.

Subjects

waste containment | waste containment | waste remediation | waste remediation | soil remediation | soil remediation | groundwater remediation | groundwater remediation | contaminated site | contaminated site | contamination | contamination | waste disposal | waste disposal | mass transport | mass transport | Superfund | Superfund | EPA | EPA | USGS | USGS | air sparging | air sparging | air stripper | air stripper | bioremediation | bioremediation | soil vapor extraction | soil vapor extraction | SVE | SVE | pump and treat | pump and treat | landfill | landfill | leachate | leachate | chlorinated solvent | chlorinated solvent | NAPL | NAPL | LNAPL | LNAPL | DNAPL | DNAPL | TCE | TCE | PCE | PCE | risk assessment | risk assessment | soil liner | soil liner | clay liner | clay liner | geomembrane | geomembrane | brownfield | brownfield | remediation technologies | remediation technologies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.897 Selected Topics in Cryptography (MIT) 6.897 Selected Topics in Cryptography (MIT)

Description

This course covers a number of advanced "selected topics" in the field of cryptography. The first part of the course tackles the foundational question of how to define security of cryptographic protocols in a way that is appropriate for modern computer networks, and how to construct protocols that satisfy these security definitions. For this purpose, the framework of "universally composable security" is studied and used. The second part of the course concentrates on the many challenges involved in building secure electronic voting systems, from both theoretical and practical points of view. In the third part, an introduction to cryptographic constructions based on bilinear pairings is given. This course covers a number of advanced "selected topics" in the field of cryptography. The first part of the course tackles the foundational question of how to define security of cryptographic protocols in a way that is appropriate for modern computer networks, and how to construct protocols that satisfy these security definitions. For this purpose, the framework of "universally composable security" is studied and used. The second part of the course concentrates on the many challenges involved in building secure electronic voting systems, from both theoretical and practical points of view. In the third part, an introduction to cryptographic constructions based on bilinear pairings is given.

Subjects

cryptography | cryptography | cryptanalysis | cryptanalysis | cryptographic protocols | cryptographic protocols | general security definitions | general security definitions | composition theorems | composition theorems | protocols | protocols | commitments | commitments | key exchange | key exchange | general multi-party computation | general multi-party computation | composable notions of security for PK encryption and signatures | composable notions of security for PK encryption and signatures | theory of extractors | theory of extractors | privacy amplification | privacy amplification | special-purpose factoring devices | special-purpose factoring devices | algorithms | algorithms | concrete security arguments | concrete security arguments | differential cryptanalysis | differential cryptanalysis | public-key infrastructures | public-key infrastructures | electronic voting | electronic voting

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.15 Experimental Molecular Genetics (MIT) 7.15 Experimental Molecular Genetics (MIT)

Description

This project-based laboratory course provides students with in-depth experience in experimental molecular genetics, using modern methods of molecular biology and genetics to conduct original research. The course is geared towards students (including sophomores) who have a strong interest in a future career in biomedical research. This semester will focus on chemical genetics using Caenorhabditis elegans as a model system. Students will gain experience in research rationale and methods, as well as training in the planning, execution, and communication of experimental biology. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear This project-based laboratory course provides students with in-depth experience in experimental molecular genetics, using modern methods of molecular biology and genetics to conduct original research. The course is geared towards students (including sophomores) who have a strong interest in a future career in biomedical research. This semester will focus on chemical genetics using Caenorhabditis elegans as a model system. Students will gain experience in research rationale and methods, as well as training in the planning, execution, and communication of experimental biology. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear

Subjects

molecular genetics | molecular genetics | molecular biology | molecular biology | chemical genetics | chemical genetics | Caenorhabditis elegans | Caenorhabditis elegans | experimental biology | experimental biology | bioinformatics | bioinformatics | genetic linkage | genetic linkage | SNP mapping | SNP mapping | RNAi | RNAi | Gibson assembly | Gibson assembly | cDNA | cDNA | PCR | PCR | Primer design | Primer design | RNA extraction | RNA extraction | chemotaxis assay | chemotaxis assay | Next Generation Sequencing | Next Generation Sequencing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.301 Chemistry Laboratory Techniques (MIT) 5.301 Chemistry Laboratory Techniques (MIT)

Description

This course is an intensive introduction to the techniques of experimental chemistry and gives first year students an opportunity to learn and master the basic chemistry lab techniques for carrying out experiments. Students who successfully complete the course and obtain a "Competent Chemist" (CC) or "Expert Experimentalist" (EE) rating are likely to secure opportunities for research work in a chemistry lab at MIT. Acknowledgements The laboratory manual and materials for this course were prepared by Dr. Katherine J. Franz and Dr. Kevin M. Shea with the assistance of Professors Rick L. Danheiser and Timothy M. Swager. Materials have been revised by Dr. J. Haseltine, Dr. Kevin M. Shea, Dr. Sarah A. Tabacco, Dr. Kimberly L. Berkowski, Anne M. (Gorham) Rachupka, and Dr. Joh This course is an intensive introduction to the techniques of experimental chemistry and gives first year students an opportunity to learn and master the basic chemistry lab techniques for carrying out experiments. Students who successfully complete the course and obtain a "Competent Chemist" (CC) or "Expert Experimentalist" (EE) rating are likely to secure opportunities for research work in a chemistry lab at MIT. Acknowledgements The laboratory manual and materials for this course were prepared by Dr. Katherine J. Franz and Dr. Kevin M. Shea with the assistance of Professors Rick L. Danheiser and Timothy M. Swager. Materials have been revised by Dr. J. Haseltine, Dr. Kevin M. Shea, Dr. Sarah A. Tabacco, Dr. Kimberly L. Berkowski, Anne M. (Gorham) Rachupka, and Dr. Joh

Subjects

chemistry | chemistry | experiment | experiment | laboratory techniques | laboratory techniques | purification | purification | transfer and extraction | transfer and extraction | column chromatography | column chromatography | protein assays | protein assays | error analysis | error analysis | NMR | NMR | IR | IR | gas chromatography | gas chromatography | spectroscopy | spectroscopy | UV-Vis | UV-Vis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

MAS.622J Pattern Recognition and Analysis (MIT) MAS.622J Pattern Recognition and Analysis (MIT)

Description

This class deals with the fundamentals of characterizing and recognizing patterns and features of interest in numerical data. We discuss the basic tools and theory for signal understanding problems with applications to user modeling, affect recognition, speech recognition and understanding, computer vision, physiological analysis, and more. We also cover decision theory, statistical classification, maximum likelihood and Bayesian estimation, nonparametric methods, unsupervised learning and clustering. Additional topics on machine and human learning from active research are also talked about in the class. This class deals with the fundamentals of characterizing and recognizing patterns and features of interest in numerical data. We discuss the basic tools and theory for signal understanding problems with applications to user modeling, affect recognition, speech recognition and understanding, computer vision, physiological analysis, and more. We also cover decision theory, statistical classification, maximum likelihood and Bayesian estimation, nonparametric methods, unsupervised learning and clustering. Additional topics on machine and human learning from active research are also talked about in the class.

Subjects

MAS.622 | MAS.622 | 1.126 | 1.126 | pattern recognition | pattern recognition | feature detection | feature detection | classification | classification | probability theory | probability theory | pattern analysis | pattern analysis | conditional probability | conditional probability | bayes rule | bayes rule | random vectors | decision theory | random vectors | decision theory | ROC curves | ROC curves | likelihood ratio test | likelihood ratio test | fisher discriminant | fisher discriminant | template-based recognition | template-based recognition | feature extraction | feature extraction | eigenvector and multilinear analysis | eigenvector and multilinear analysis | linear discriminant | linear discriminant | perceptron learning | perceptron learning | optimization by gradient descent | optimization by gradient descent | support vecotr machines | support vecotr machines | K-nearest-neighbor classification | K-nearest-neighbor classification | parzen estimation | parzen estimation | unsupervised learning | unsupervised learning | clustering | clustering | vector quantization | vector quantization | K-means | K-means | Expectation-Maximization | Expectation-Maximization | Hidden markov models | Hidden markov models | viterbi algorithm | viterbi algorithm | Baum-Welch algorithm | Baum-Welch algorithm | linear dynamical systems | linear dynamical systems | Kalman filtering | Kalman filtering | Bayesian networks | Bayesian networks | decision trees | decision trees | reinforcement learning | reinforcement learning | genetic algorithms | genetic algorithms

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.287 Kitchen Chemistry (MIT) ES.287 Kitchen Chemistry (MIT)

Description

Includes audio/video content: AV faculty introductions. This seminar is designed to be an experimental and hands-on approach to applied chemistry (as seen in cooking). Cooking may be the oldest and most widespread application of chemistry and recipes may be the oldest practical result of chemical research. We shall do some cooking experiments to illustrate some chemical principles, including extraction, denaturation, and phase changes. Includes audio/video content: AV faculty introductions. This seminar is designed to be an experimental and hands-on approach to applied chemistry (as seen in cooking). Cooking may be the oldest and most widespread application of chemistry and recipes may be the oldest practical result of chemical research. We shall do some cooking experiments to illustrate some chemical principles, including extraction, denaturation, and phase changes.

Subjects

cooking | cooking | food | food | chemistry | chemistry | experiment | experiment | extraction | extraction | denaturation | denaturation | phase change | phase change | capsicum | capsicum | biochemistry | biochemistry | chocolate | chocolate | cheese | cheese | yeast | yeast | recipe | recipe | jam | jam | pectin | pectin | enzyme | enzyme | dairy | dairy | molecular gastronomy | molecular gastronomy | salt | salt | colloid | colloid | stability | stability | liquid nitrogen | liquid nitrogen | ice cream | ice cream | biology | biology | microbiology | microbiology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.913-C Pattern Recognition for Machine Vision (MIT) 9.913-C Pattern Recognition for Machine Vision (MIT)

Description

The course is directed towards advanced undergraduate and beginning graduate students. It will focus on applications of pattern recognition techniques to problems of machine vision.The topics covered in the course include:Overview of problems of machine vision and pattern classificationImage formation and processingFeature extraction from imagesBiological object recognitionBayesian decision theoryClustering The course is directed towards advanced undergraduate and beginning graduate students. It will focus on applications of pattern recognition techniques to problems of machine vision.The topics covered in the course include:Overview of problems of machine vision and pattern classificationImage formation and processingFeature extraction from imagesBiological object recognitionBayesian decision theoryClustering

Subjects

pattern recognition | pattern recognition | machine vision | machine vision | pattern classification | pattern classification | Image formation | Image formation | processing | processing | feature extraction | feature extraction | Biological object recognition | Biological object recognition | Bayesian Decision Theory | Bayesian Decision Theory | Clustering | Clustering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.897 Selected Topics in Cryptography (MIT)

Description

This course covers a number of advanced "selected topics" in the field of cryptography. The first part of the course tackles the foundational question of how to define security of cryptographic protocols in a way that is appropriate for modern computer networks, and how to construct protocols that satisfy these security definitions. For this purpose, the framework of "universally composable security" is studied and used. The second part of the course concentrates on the many challenges involved in building secure electronic voting systems, from both theoretical and practical points of view. In the third part, an introduction to cryptographic constructions based on bilinear pairings is given.

Subjects

cryptography | cryptanalysis | cryptographic protocols | general security definitions | composition theorems | protocols | commitments | key exchange | general multi-party computation | composable notions of security for PK encryption and signatures | theory of extractors | privacy amplification | special-purpose factoring devices | algorithms | concrete security arguments | differential cryptanalysis | public-key infrastructures | electronic voting

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.301 Chemistry Laboratory Techniques (MIT)

Description

This course is an intensive introduction to the techniques of experimental chemistry and gives first year students an opportunity to learn and master the basic chemistry lab techniques for carrying out experiments. Students who successfully complete the course and obtain a "Competent Chemist" (CC) or "Expert Experimentalist" (EE) rating are likely to secure opportunities for research work in a chemistry lab at MIT. Acknowledgements The laboratory manual and materials for this course were prepared by Dr. Katherine J. Franz and Dr. Kevin M. Shea with the assistance of Professors Rick L. Danheiser and Timothy M. Swager. Materials have been revised by Dr. J. Haseltine, Dr. Kevin M. Shea, and Dr. Sarah A. Tabacco. WARNING NOTICE The experiments described in these materials a

Subjects

chemistry | experiment | laboratory techniques | purification | transfer and extraction | column chromatography | protein assays | error analysis | NMR | IR | gas chromatography | spectroscopy | UV-Vis | experimental chemistry | original research projects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

MAS.622J Pattern Recognition and Analysis (MIT)

Description

This class deals with the fundamentals of characterizing and recognizing patterns and features of interest in numerical data. We discuss the basic tools and theory for signal understanding problems with applications to user modeling, affect recognition, speech recognition and understanding, computer vision, physiological analysis, and more. We also cover decision theory, statistical classification, maximum likelihood and Bayesian estimation, nonparametric methods, unsupervised learning and clustering. Additional topics on machine and human learning from active research are also talked about in the class.

Subjects

MAS.622 | 1.126 | pattern recognition | feature detection | classification | probability theory | pattern analysis | conditional probability | bayes rule | random vectors | decision theory | ROC curves | likelihood ratio test | fisher discriminant | template-based recognition | feature extraction | eigenvector and multilinear analysis | linear discriminant | perceptron learning | optimization by gradient descent | support vecotr machines | K-nearest-neighbor classification | parzen estimation | unsupervised learning | clustering | vector quantization | K-means | Expectation-Maximization | Hidden markov models | viterbi algorithm | Baum-Welch algorithm | linear dynamical systems | Kalman filtering | Bayesian networks | decision trees | reinforcement learning | genetic algorithms

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.881 Natural Language Processing (MIT)

Description

This course is a graduate level introduction to natural language processing, the primary concern of which is the study of human language from a computational perspective.The class will cover models at the level of syntactic, semantic and discourse processing. The emphasis will be on corpus-based methods and algorithms, such as Hidden Markov Models and probabilistic context free grammars. We will discuss the use of these methods and models in a variety of applications including syntactic parsing, information extraction, statistical machine translation, and summarization.This subject qualifies as an Artificial Intelligence and Applications concentration subject.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .gz and .tar

Subjects

syntactic models | semantic models | discourse processing models | corpus-based methods | algorithms | Hidden Markov Models | probabilistic context free grammars | syntactic parsing | information extraction | statistical machine translation | summarization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Hudson's Soap Extract - TWCMS:G12356

Description

Subjects

blue | white | abstract | colour | industry | advertising | industrial | message | box | social | communication | cardboard | laundry | processing | letter | packaging | instructions | unusual | ww1 | phrase | striking | product | household | slogan | firstworldwar | washing | commercialism | manufacturer | concentrated | englanduk | 191418 | salesgimmick | worlife | householdproduct | rshudsonltd | firstworldwarproductpackaging | hudsonssoapextract

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.34 Waste Containment and Remediation Technology (MIT)

Description

1.34 focuses on the geotechnical aspects of hazardous waste management, with specific emphasis on the design of land-based waste containment structures and hazardous waste remediation. Topics include: introduction to hazardous waste, definition of hazardous waste, regulatory requirements, waste characteristics, geo-chemistry, and contaminant transport; the design and operation of waste containment structures, landfills, impoundments, and mine-waste disposal; the characterization and remediation of contaminated sites, the superfund law, preliminary site assessment, site investigation techniques, and remediation technologies; and monitoring requirements.

Subjects

waste containment | waste remediation | soil remediation | groundwater remediation | contaminated site | contamination | waste disposal | mass transport | Superfund | EPA | USGS | air sparging | air stripper | bioremediation | soil vapor extraction | SVE | pump and treat | landfill | leachate | chlorinated solvent | NAPL | LNAPL | DNAPL | TCE | PCE | risk assessment | soil liner | clay liner | geomembrane | brownfield | remediation technologies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Laboratory Investigation of Chewing Gum

Description

A laboratory-based investigation into the chemical flavourings found in chewing gum. The investigation is based around some 'problem' gum and the students are set the challenge of solving the problem. Students contribute to experimental design and carry out extractions, purifications and analysis of purified extracts by GC and/or GC-MS.

Subjects

chewing gum | chemistry | flavourings | problem solving | laboratory | extractions | gas chromatography | mass spectrometry | ukoer | sfsoer | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

s Library

Description

Authors:  Alex d'Angelo This game has been designed to help high-school and college students discover top-quality web resources in a fun and exciting way. Clicked 86 times. Last clicked 10/28/2014 - 00:23. Teaching & Learning Context:  Steer Mistress Serendipity on her broom to connect to top-quality free e-resources, useful for high schools and colleges.

Subjects

Information and Library Studies | Humanities | Other | Simulations | English | Post-secondary | e-resources | extract | game | library

License

http://creativecommons.org/licenses/by/2.5/za/

Site sourced from

http://opencontent.uct.ac.za/recent-posts/feed.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata