Searching for fatigue : 64 results found | RSS Feed for this search

1 2 3

TALAT Lecture 2401: Fatigue Behaviour and Analysis TALAT Lecture 2401: Fatigue Behaviour and Analysis

Description

This lecture explains why, when and where fatigue problems may arise and the special significance to aluminium as structural material; it helps to understand the effects of material and loading parameters on fatigue; to appreciate the statistical nature of fatigue and its importance in data analysis, evaluation and use; it shows how to estimate fatigue life under service conditions of time-dependent, variable amplitude loading; how to estimate stresses acting in notches and welds with conceptual approaches other than nominal stress; it provides qualitative and quantitative information on the classification of welded details and allow for more sophisticated design procedures. Background in materials engineering, design and fatigue is required. This lecture explains why, when and where fatigue problems may arise and the special significance to aluminium as structural material; it helps to understand the effects of material and loading parameters on fatigue; to appreciate the statistical nature of fatigue and its importance in data analysis, evaluation and use; it shows how to estimate fatigue life under service conditions of time-dependent, variable amplitude loading; how to estimate stresses acting in notches and welds with conceptual approaches other than nominal stress; it provides qualitative and quantitative information on the classification of welded details and allow for more sophisticated design procedures. Background in materials engineering, design and fatigue is required.

Subjects

aluminium | aluminium | aluminum | aluminum | european aluminium association | european aluminium association | EAA | EAA | Training in Aluminium Application Technologies | Training in Aluminium Application Technologies | training | training | metallurgy | metallurgy | technology | technology | lecture | lecture | design | design | fatigue | fatigue | fatigue cracks | fatigue cracks | susceptibility | susceptibility | cyclic loading | cyclic loading | crack growth | crack growth | crack propagation rate | crack propagation rate | endurance limit | endurance limit | predictive theories | predictive theories | damage accumulation theories | damage accumulation theories | Manson-Coffin law | Manson-Coffin law | crack growth laws | crack growth laws | ideal cumulative damage theory | ideal cumulative damage theory | fatigue data analysis | fatigue data analysis | middle-cycle fatigue range | middle-cycle fatigue range | high-cycle fatigue range | high-cycle fatigue range | fatigue diagrams | fatigue diagrams | linear P-S-N curves | linear P-S-N curves | non-linear P-S-N curves | non-linear P-S-N curves | service behaviour | service behaviour | time dependent loads | time dependent loads | load spectrum | load spectrum | cycle counting | cycle counting | rain-flow cycle counting method | rain-flow cycle counting method | service behaviour fatigue test | service behaviour fatigue test | analytical life estimation | analytical life estimation | damage accumulation | damage accumulation | Palmgren-Miner linear damage accumulation hypothesis | Palmgren-Miner linear damage accumulation hypothesis | strain | strain | fatigue life | fatigue life | notch theory | notch theory | strain-life diagram | strain-life diagram | weld imperfections | weld imperfections | static strength | static strength | fatigue strength | fatigue strength | cracks | cracks | porosity | porosity | inclusions | inclusions | oxides | oxides | lack of penetration | lack of penetration | weld shape | weld shape | lack of fusion | lack of fusion | geometric misalignment | geometric misalignment | arc strike | arc strike | spatter | spatter | post-weld mechanical imperfections | post-weld mechanical imperfections | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2401: Fatigue Behaviour and Analysis

Description

This lecture explains why, when and where fatigue problems may arise and the special significance to aluminium as structural material; it helps to understand the effects of material and loading parameters on fatigue; to appreciate the statistical nature of fatigue and its importance in data analysis, evaluation and use; it shows how to estimate fatigue life under service conditions of time-dependent, variable amplitude loading; how to estimate stresses acting in notches and welds with conceptual approaches other than nominal stress; it provides qualitative and quantitative information on the classification of welded details and allow for more sophisticated design procedures. Background in materials engineering, design and fatigue is required.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | fatigue | fatigue cracks | susceptibility | cyclic loading | crack growth | crack propagation rate | endurance limit | predictive theories | damage accumulation theories | manson-coffin law | crack growth laws | ideal cumulative damage theory | fatigue data analysis | middle-cycle fatigue range | high-cycle fatigue range | fatigue diagrams | linear p-s-n curves | non-linear p-s-n curves | service behaviour | time dependent loads | load spectrum | cycle counting | rain-flow cycle counting method | service behaviour fatigue test | analytical life estimation | damage accumulation | palmgren-miner linear damage accumulation hypothesis | strain | fatigue life | notch theory | strain-life diagram | weld imperfections | static strength | fatigue strength | cracks | porosity | inclusions | oxides | lack of penetration | weld shape | lack of fusion | geometric misalignment | arc strike | spatter | post-weld mechanical imperfections | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2402: Design Recommendations for fatigue loaded structures TALAT Lecture 2402: Design Recommendations for fatigue loaded structures

Description

This lecture presents calculation of design stresses for variable stress ratios in practice, explanation on the background of design recommendations; it demonstrates the concept of partial safety factors and supply appropriate background information for aluminium; it enables the designer to evaluate service behavior of structural details on a more sophisticated level applying the same principles as in current design recommendations; it provides understanding of the fatigue design procedure according to current recommendations. Background knowledge in engineering, materials and fatigue as well as some knowledge in statistics is required. This lecture presents calculation of design stresses for variable stress ratios in practice, explanation on the background of design recommendations; it demonstrates the concept of partial safety factors and supply appropriate background information for aluminium; it enables the designer to evaluate service behavior of structural details on a more sophisticated level applying the same principles as in current design recommendations; it provides understanding of the fatigue design procedure according to current recommendations. Background knowledge in engineering, materials and fatigue as well as some knowledge in statistics is required.

Subjects

aluminium | aluminium | aluminum | aluminum | european aluminium association | european aluminium association | EAA | EAA | Training in Aluminium Application Technologies | Training in Aluminium Application Technologies | training | training | metallurgy | metallurgy | technology | technology | lecture | lecture | design | design | fatigue | fatigue | R-ratio effect | R-ratio effect | factor f (R) | factor f (R) | ERAAS | ERAAS | residual stress effects | residual stress effects | safety | safety | reliability | reliability | partial safety factor | partial safety factor | fatigue design curves | fatigue design curves | component testing | component testing | classification | classification | design curves | design curves | S-N slope | S-N slope | steel codes | steel codes | british standard 8118: 1991 | british standard 8118: 1991 | data analysis | data analysis | Gusset plate | Gusset plate | tubular element | tubular element | welded on edge | welded on edge | loading | loading | fatigue assessment | fatigue assessment | TUM-ALFABET software | TUM-ALFABET software | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2405: Fatigue an Fracture in Aluminium Structures TALAT Lecture 2405: Fatigue an Fracture in Aluminium Structures

Description

This lecture outlines modern fatigue design procedures and standards, the respective background information; it introduces fatigue design by testing; it presents fatigue data analysis and evaluation; it covers safety and reliability issues in aluminium design. This material has been utilized together with further definitions for classification of structural details to provide a proposal supported by the European Aluminium Association as a National Application Document, which may also be considered for introduction into the actual standard when this will be converted from an ENV to an EN. This lecture outlines modern fatigue design procedures and standards, the respective background information; it introduces fatigue design by testing; it presents fatigue data analysis and evaluation; it covers safety and reliability issues in aluminium design. This material has been utilized together with further definitions for classification of structural details to provide a proposal supported by the European Aluminium Association as a National Application Document, which may also be considered for introduction into the actual standard when this will be converted from an ENV to an EN.

Subjects

aluminium | aluminium | aluminum | aluminum | european aluminium association | european aluminium association | EAA | EAA | Training in Aluminium Application Technologies | Training in Aluminium Application Technologies | training | training | metallurgy | metallurgy | technology | technology | lecture | lecture | design | design | fatigue | fatigue | data analysis | data analysis | design line | design line | safety | safety | reliability | reliability | partial safety factors | partial safety factors | fatigue loading | fatigue loading | fatigue strength | fatigue strength | safety index | safety index | aluminium data bank | aluminium data bank | AlDaBa | AlDaBa | damage tolerant design | damage tolerant design | ENV 1999-2 | ENV 1999-2 | life prediction procedure | life prediction procedure | sequence effects | sequence effects | strain-life approach | strain-life approach | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4500: Resistance Welding TALAT Lecture 4500: Resistance Welding

Description

This lecture describes the spot welding characteristics of aluminium and its alloys, the spot welding process, the choice of process parameters, strength values, electrode life and ?requirements for quality assurance. General engineering background and knowledge in aluminium metallurgy and physical properties, and surface characteristics (e.g. TALAT lecture 5101) is assumed. This lecture describes the spot welding characteristics of aluminium and its alloys, the spot welding process, the choice of process parameters, strength values, electrode life and ?requirements for quality assurance. General engineering background and knowledge in aluminium metallurgy and physical properties, and surface characteristics (e.g. TALAT lecture 5101) is assumed.

Subjects

aluminium | aluminium | aluminum | aluminum | european aluminium association | european aluminium association | EAA | EAA | Training in Aluminium Application Technologies | Training in Aluminium Application Technologies | training | training | metallurgy | metallurgy | technology | technology | lecture | lecture | joining | joining | fastening | fastening | mechanical | mechanical | resistance welding | resistance welding | spot welding | spot welding | physical properties | physical properties | steel | steel | resistance | resistance | oxide film | oxide film | surface pretreatment | surface pretreatment | contact resistance | contact resistance | storage time | storage time | Peltier effect | Peltier effect | spot welding machines | spot welding machines | relative voltage drop | relative voltage drop | resistance welding machine | resistance welding machine | life of electrodes | life of electrodes | machine design | machine design | current type | current type | current-force diagram | current-force diagram | welding parameters | welding parameters | weld spot diameter | weld spot diameter | direct current | direct current | shear strength | shear strength | weld strengthrepeated tensile stress fatigue strength | weld strengthrepeated tensile stress fatigue strength | fatigue tests | fatigue tests | engineering parts | engineering parts | fatigue strength | fatigue strength | 2024cl sheets | 2024cl sheets | quality assurance | quality assurance | imperfections | imperfections | aeronautical standards | aeronautical standards | metallography | metallography | x-ray analysis | x-ray analysis | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Palliative Care Palliative Care

Description

Dr Bee Wee tells us about Palliative Care in Oxford and her research on end of life care and fatigue. Dr Bee Wee is the Head of Palliative Care Research and Development, based at Sir Michael Sobell House in Oxford. Her current lines of research include End of life care for people with incurable cancer and advanced non-malignant disease, Symptom management and Rehabilitation. Dr Bee Wee tells us about Palliative Care in Oxford and her research on end of life care and fatigue. Dr Bee Wee is the Head of Palliative Care Research and Development, based at Sir Michael Sobell House in Oxford. Her current lines of research include End of life care for people with incurable cancer and advanced non-malignant disease, Symptom management and Rehabilitation.

Subjects

fatigue | fatigue | end of life care | end of life care | symptom management | symptom management | Palliative cave | Palliative cave | fatigue | end of life care | symptom management | Palliative cave | fatigue | end of life care | symptom management | Palliative cave

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.35 Fracture and Fatigue (MIT) 3.35 Fracture and Fatigue (MIT)

Description

Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components. Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

Subjects

Linear elastic | Linear elastic | elastic-plastic fracture mechanics | elastic-plastic fracture mechanics | Microstructural effects on fracture | Microstructural effects on fracture | Toughening mechanisms | Toughening mechanisms | Crack growth resistance | Crack growth resistance | creep fracture | creep fracture | Interface fracture mechanics | Interface fracture mechanics | Fatigue damage | Fatigue damage | dislocation substructures | dislocation substructures | Variable amplitude fatigue | Variable amplitude fatigue | Corrosion fatigue | Corrosion fatigue | experimental methods | experimental methods | microstructural effects | microstructural effects | metals | metals | ceramics | ceramics | polymers | polymers | thin films | thin films | biological materials | biological materials | composites | composites | single crystals | single crystals | stress-life | stress-life | strain-life | strain-life | structural components | structural components | bioimplant components | bioimplant components | microelectronic components | microelectronic components | case studies | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.35 Fracture and Fatigue (MIT) 3.35 Fracture and Fatigue (MIT)

Description

Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components. Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

Subjects

Linear elastic | Linear elastic | elastic-plastic fracture mechanics | elastic-plastic fracture mechanics | Microstructural effects on fracture | Microstructural effects on fracture | Toughening mechanisms | Toughening mechanisms | Crack growth resistance | Crack growth resistance | creep fracture | creep fracture | Interface fracture mechanics | Interface fracture mechanics | Fatigue damage | Fatigue damage | dislocation substructures | dislocation substructures | Variable amplitude fatigue | Variable amplitude fatigue | Corrosion fatigue | Corrosion fatigue | experimental methods | experimental methods | microstructural effects | microstructural effects | metals | metals | ceramics | ceramics | polymers | polymers | thin films | thin films | biological materials | biological materials | composites | composites | single crystals | single crystals | stress-life | stress-life | strain-life | strain-life | structural components | structural components | bioimplant components | bioimplant components | microelectronic components | microelectronic components | case studies | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.35 Fracture and Fatigue (MIT) 3.35 Fracture and Fatigue (MIT)

Description

Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components. Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

Subjects

Linear elastic | Linear elastic | elastic-plastic fracture mechanics | elastic-plastic fracture mechanics | Microstructural effects on fracture | Microstructural effects on fracture | Toughening mechanisms | Toughening mechanisms | Crack growth resistance | Crack growth resistance | creep fracture | creep fracture | Interface fracture mechanics | Interface fracture mechanics | Fatigue damage | Fatigue damage | dislocation substructures | dislocation substructures | Variable amplitude fatigue | Variable amplitude fatigue | Corrosion fatigue | Corrosion fatigue | experimental methods | experimental methods | microstructural effects | microstructural effects | metals | metals | ceramics | ceramics | polymers | polymers | thin films | thin films | biological materials | biological materials | composites | composites | single crystals | single crystals | stress-life | stress-life | strain-life | strain-life | structural components | structural components | bioimplant components | bioimplant components | microelectronic components | microelectronic components | case studies | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2712: Design Example in Fatigue TALAT Lecture 2712: Design Example in Fatigue

Description

This is a fully documented calculation example with direct reference to the actual code provisions. Its purpose is to present an outline of necessary steps but also of possible considerations for other cases or possibilities of enhancement of fatigue behaviour in service. It is based on European Standard ENV 1999-2 (Eurocode 9) This is a fully documented calculation example with direct reference to the actual code provisions. Its purpose is to present an outline of necessary steps but also of possible considerations for other cases or possibilities of enhancement of fatigue behaviour in service. It is based on European Standard ENV 1999-2 (Eurocode 9)

Subjects

aluminium | aluminium | aluminum | aluminum | european aluminium association | european aluminium association | EAA | EAA | Training in Aluminium Application Technologies | Training in Aluminium Application Technologies | training | training | metallurgy | metallurgy | technology | technology | lecture | lecture | design | design | service conditions | service conditions | loading spectrum | loading spectrum | stress spectrum | stress spectrum | structural detail | structural detail | S-N curve parameters | S-N curve parameters | fatigue damage | fatigue damage | life check | life check | damage equivalent stress | damage equivalent stress | damage tolerant design | damage tolerant design | mean stress effect | mean stress effect | environmental effects | environmental effects | enhancement of fatigue strength | enhancement of fatigue strength | quality requirements | quality requirements | fitness-for-purpose concept | fitness-for-purpose concept | inspection | inspection | acceptance levels | acceptance levels | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Palliative Care Palliative Care

Description

Dr Bee Wee tells us about Palliative Care in Oxford and her research on end of life care and fatigue. Dr Bee Wee is the Head of Palliative Care Research and Development, based at Sir Michael Sobell House in Oxford. Her current lines of research include End of life care for people with incurable cancer and advanced non-malignant disease, Symptom management and Rehabilitation. Dr Bee Wee tells us about Palliative Care in Oxford and her research on end of life care and fatigue. Dr Bee Wee is the Head of Palliative Care Research and Development, based at Sir Michael Sobell House in Oxford. Her current lines of research include End of life care for people with incurable cancer and advanced non-malignant disease, Symptom management and Rehabilitation.

Subjects

fatigue | fatigue | end of life care | end of life care | symptom management | symptom management | Palliative cave | Palliative cave | fatigue | end of life care | symptom management | Palliative cave | fatigue | end of life care | symptom management | Palliative cave

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2402: Design Recommendations for fatigue loaded structures

Description

This lecture presents calculation of design stresses for variable stress ratios in practice, explanation on the background of design recommendations; it demonstrates the concept of partial safety factors and supply appropriate background information for aluminium; it enables the designer to evaluate service behavior of structural details on a more sophisticated level applying the same principles as in current design recommendations; it provides understanding of the fatigue design procedure according to current recommendations. Background knowledge in engineering, materials and fatigue as well as some knowledge in statistics is required.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | fatigue | r-ratio effect | factor f (r) | eraas | residual stress effects | safety | reliability | partial safety factor | fatigue design curves | component testing | classification | design curves | s-n slope | steel codes | british standard 8118: 1991 | data analysis | gusset plate | tubular element | welded on edge | loading | fatigue assessment | tum-alfabet software | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2405: Fatigue an Fracture in Aluminium Structures

Description

This lecture outlines modern fatigue design procedures and standards, the respective background information; it introduces fatigue design by testing; it presents fatigue data analysis and evaluation; it covers safety and reliability issues in aluminium design. This material has been utilized together with further definitions for classification of structural details to provide a proposal supported by the European Aluminium Association as a National Application Document, which may also be considered for introduction into the actual standard when this will be converted from an ENV to an EN.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | fatigue | data analysis | design line | safety | reliability | partial safety factors | fatigue loading | fatigue strength | safety index | aluminium data bank | aldaba | damage tolerant design | env 1999-2 | life prediction procedure | sequence effects | strain-life approach | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4500: Resistance Welding

Description

This lecture describes the spot welding characteristics of aluminium and its alloys, the spot welding process, the choice of process parameters, strength values, electrode life and ?requirements for quality assurance. General engineering background and knowledge in aluminium metallurgy and physical properties, and surface characteristics (e.g. TALAT lecture 5101) is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | resistance welding | spot welding | physical properties | steel | resistance | oxide film | surface pretreatment | contact resistance | storage time | peltier effect | spot welding machines | relative voltage drop | resistance welding machine | life of electrodes | machine design | current type | current-force diagram | welding parameters | weld spot diameter | direct current | shear strength | weld strengthrepeated tensile stress fatigue strength | fatigue tests | engineering parts | fatigue strength | 2024cl sheets | quality assurance | imperfections | aeronautical standards | metallography | x-ray analysis | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.002 Mechanics and Materials II (MIT) 2.002 Mechanics and Materials II (MIT)

Description

This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design. This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design.

Subjects

beam bending | beam bending | buckling | buckling | vibration | vibration | polymers | polymers | viscoelasticity | viscoelasticity | strength | strength | ductility | ductility | stress | stress | stress concentration | stress concentration | sheet bending | sheet bending | heat treatment | heat treatment | fracture | fracture | plasticity | plasticity | creep | creep | fatigue | fatigue | solid materials | solid materials | mechanical loading | mechanical loading | thermal loading | thermal loading | design-limiting behavior | design-limiting behavior | stiffness | stiffness | toughness | toughness | durability | durability | engineering materials | engineering materials | materials-limiting problem | materials-limiting problem | materials selection | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.72 Elements of Mechanical Design (MIT) 2.72 Elements of Mechanical Design (MIT)

Description

This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliv This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliv

Subjects

biology | biology | chemistry | chemistry | synthetic biology | synthetic biology | project | project | biotech | biotech | genetic engineering | genetic engineering | GMO | GMO | ethics | ethics | biomedical ethics | biomedical ethics | genetics | genetics | recombinant DNA | recombinant DNA | DNA | DNA | gene sequencing | gene sequencing | gene synthesis | gene synthesis | biohacking | biohacking | computational biology | computational biology | iGEM | iGEM | BioBrick | BioBrick | systems biology | systems biology | machine design | machine design | hardware | hardware | machine element | machine element | design process | design process | design layout | design layout | prototype | prototype | mechanism | mechanism | engineering | engineering | fabrication | fabrication | lathe | lathe | precision engineering | precision engineering | group project | group project | project management | project management | CAD | CAD | fatigue | fatigue | Gantt chart | Gantt chart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.22 Mechanical Behavior of Materials (MIT) 3.22 Mechanical Behavior of Materials (MIT)

Description

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications. Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications.

Subjects

Phenomenology | Phenomenology | mechanical behavior | mechanical behavior | material structure | material structure | deformation | deformation | failure | failure | elasticity | elasticity | viscoelasticity | viscoelasticity | plasticity | plasticity | creep | creep | fracture | fracture | fatigue | fatigue | metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | thin films | thin films | carbon nanotubes | carbon nanotubes | battery materials | battery materials | superelastic alloys | superelastic alloys | defect nucleation | defect nucleation | student projects | student projects | viral capsides | viral capsides

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.A27 Case Studies in Forensic Metallurgy (MIT) 3.A27 Case Studies in Forensic Metallurgy (MIT)

Description

TV programs such as "Law and Order" show how forensic experts are called upon to give testimony that often determines the outcome of court cases. Engineers are one class of expert who can help display evidence in a new light to solve cases. In this seminar you will be part of the problem-solving process, working through both previously solved and unsolved cases. Each week we will investigate cases, from the facts that make up each side to the potential evidence we can use as engineers to expose culprits. The cases range from disintegrating airplane engines to gas main explosions to Mafia murders. This seminar will be full of discussions about the cases and creative approaches to reaching the solutions. The approach is hands-on so you will have a chance to participate in the process, not TV programs such as "Law and Order" show how forensic experts are called upon to give testimony that often determines the outcome of court cases. Engineers are one class of expert who can help display evidence in a new light to solve cases. In this seminar you will be part of the problem-solving process, working through both previously solved and unsolved cases. Each week we will investigate cases, from the facts that make up each side to the potential evidence we can use as engineers to expose culprits. The cases range from disintegrating airplane engines to gas main explosions to Mafia murders. This seminar will be full of discussions about the cases and creative approaches to reaching the solutions. The approach is hands-on so you will have a chance to participate in the process, not

Subjects

case studies | case studies | failure | failure | fracture | fracture | seminar | seminar | stainless steel | stainless steel | aluminum | aluminum | catastrophic failure | catastrophic failure | soldering | soldering | brazing | brazing | welding | welding | corrosion | corrosion | oxidation | oxidation | fatigue | fatigue

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Ni-superalloy, fatigue crack propagation Ni-superalloy, fatigue crack propagation

Description

This sample shows fatigue crack propagation in Udimet 720, a nickel-base superalloy. To improve its high temperature mechanical properties Udimet 720 utilises a strengthening mechanism, known as order hardening. There is a large volume fraction of coherent ?' precipitates in the ? matrix. As a fatigue crack propagates through the superalloy there is a plastic region in front of the crack tip. This sample shows fatigue crack propagation in Udimet 720, a nickel-base superalloy. To improve its high temperature mechanical properties Udimet 720 utilises a strengthening mechanism, known as order hardening. There is a large volume fraction of coherent ?' precipitates in the ? matrix. As a fatigue crack propagates through the superalloy there is a plastic region in front of the crack tip.

Subjects

alloy | alloy | fatigue | fatigue | fracture | fracture | metal | metal | nickel | nickel | order hardening | order hardening | DoITPoMS | DoITPoMS | University of Cambridge | University of Cambridge | micrograph | micrograph | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Ni-superalloy, fatigue crack propagation Ni-superalloy, fatigue crack propagation

Description

This sample shows fatigue crack propagation in Udimet 720, a nickel-base superalloy. To improve its high temperature mechanical properties Udimet 720 utilises a strengthening mechanism, known as order hardening. There is a large volume fraction of coherent ?' precipitates in the ? matrix. As a fatigue crack propagates through the superalloy there is a plastic region in front of the crack tip. This sample shows fatigue crack propagation in Udimet 720, a nickel-base superalloy. To improve its high temperature mechanical properties Udimet 720 utilises a strengthening mechanism, known as order hardening. There is a large volume fraction of coherent ?' precipitates in the ? matrix. As a fatigue crack propagates through the superalloy there is a plastic region in front of the crack tip.

Subjects

alloy | alloy | fatigue | fatigue | fracture | fracture | metal | metal | nickel | nickel | order hardening | order hardening | DoITPoMS | DoITPoMS | University of Cambridge | University of Cambridge | micrograph | micrograph | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Ni-superalloy, fatigue crack propagation Ni-superalloy, fatigue crack propagation

Description

This sample shows fatigue crack propagation in Udimet 720, a nickel-base superalloy. To improve its high temperature mechanical properties Udimet 720 utilises a strengthening mechanism, known as order hardening. There is a large volume fraction of coherent ?' precipitates in the ? matrix. As a fatigue crack propagates through the superalloy there is a plastic region in front of the crack tip. This sample shows fatigue crack propagation in Udimet 720, a nickel-base superalloy. To improve its high temperature mechanical properties Udimet 720 utilises a strengthening mechanism, known as order hardening. There is a large volume fraction of coherent ?' precipitates in the ? matrix. As a fatigue crack propagates through the superalloy there is a plastic region in front of the crack tip.

Subjects

alloy | alloy | fatigue | fatigue | fracture | fracture | metal | metal | nickel | nickel | order hardening | order hardening | DoITPoMS | DoITPoMS | University of Cambridge | University of Cambridge | micrograph | micrograph | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2712: Design Example in Fatigue

Description

This is a fully documented calculation example with direct reference to the actual code provisions. Its purpose is to present an outline of necessary steps but also of possible considerations for other cases or possibilities of enhancement of fatigue behaviour in service. It is based on European Standard ENV 1999-2 (Eurocode 9)

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | service conditions | loading spectrum | stress spectrum | structural detail | s-n curve parameters | fatigue damage | life check | damage equivalent stress | damage tolerant design | mean stress effect | environmental effects | enhancement of fatigue strength | quality requirements | fitness-for-purpose concept | inspection | acceptance levels | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.002 Mechanics and Materials II (MIT) 2.002 Mechanics and Materials II (MIT)

Description

This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design. This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design.

Subjects

beam bending | beam bending | buckling | buckling | vibration | vibration | polymers | polymers | viscoelasticity | viscoelasticity | strength | strength | ductility | ductility | stress | stress | stress concentration | stress concentration | sheet bending | sheet bending | heat treatment | heat treatment | fracture | fracture | plasticity | plasticity | creep | creep | fatigue | fatigue | solid materials | solid materials | mechanical loading | mechanical loading | thermal loading | thermal loading | design-limiting behavior | design-limiting behavior | stiffness | stiffness | toughness | toughness | durability | durability | engineering materials | engineering materials | materials-limiting problem | materials-limiting problem | materials selection | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1254: Fatigue TALAT Lecture 1254: Fatigue

Description

This lecture describes the most significant correlation among foundry processes, microstructures and defects of castings and fatigue behaviour of Al casting alloys. No prior knowledge is strictly necessary; however, the basic concepts developed in TALAT lectures 2400 and 3200 are very useful for the comprehension of this lecture. This lecture describes the most significant correlation among foundry processes, microstructures and defects of castings and fatigue behaviour of Al casting alloys. No prior knowledge is strictly necessary; however, the basic concepts developed in TALAT lectures 2400 and 3200 are very useful for the comprehension of this lecture.

Subjects

aluminium | aluminium | aluminum | aluminum | european aluminium association | european aluminium association | EAA | EAA | Training in Aluminium Application Technologies | Training in Aluminium Application Technologies | training | training | metallurgy | metallurgy | technology | technology | lecture | lecture | fatigue | fatigue | casting | casting | microstructure | microstructure | component | component | process | process | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1402: Aluminium Matrix Composite Materials TALAT Lecture 1402: Aluminium Matrix Composite Materials

Description

This lecture provides understanding of the state-of-the-art of aluminium matrix composite materials; it outlines the properties of aluminium matrix composite materials as a basis for materials selection; it explains the limits of useful applications; it demonstrates the various types of aluminium matrix composites. Knowledge in metallurgy, materials science, materials engineering is assumed. This lecture provides understanding of the state-of-the-art of aluminium matrix composite materials; it outlines the properties of aluminium matrix composite materials as a basis for materials selection; it explains the limits of useful applications; it demonstrates the various types of aluminium matrix composites. Knowledge in metallurgy, materials science, materials engineering is assumed.

Subjects

aluminium | aluminium | aluminum | aluminum | european aluminium association | european aluminium association | EAA | EAA | Training in Aluminium Application Technologies | Training in Aluminium Application Technologies | training | training | metallurgy | metallurgy | technology | technology | lecture | lecture | advanced materials | advanced materials | continuous fibre composites | continuous fibre composites | discontinuously reinforced composites | discontinuously reinforced composites | particulate composites | particulate composites | density | density | thermal properties | thermal properties | stiffness | stiffness | plastic properties | plastic properties | fatigue | fatigue | wear resistance | wear resistance | interfaces | interfaces | manufacturing techniques | manufacturing techniques | liquid state | liquid state | solid state | solid state | spray methods | spray methods | in-situ production | in-situ production | automotive | automotive | aerospace | aerospace | electronic | electronic | communication | communication | application | application | sports and leisure market | sports and leisure market | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata