Searching for ferromagnetism : 12 results found | RSS Feed for this search

Magnetic Materials and Devices (MIT) Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance. This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | electrical | optical | and magnetic devices | microstructural characteristics of materials | microstructural characteristics of materials | device-motivated approach | device-motivated approach | emerging technologies | emerging technologies | physical phenomena | physical phenomena | electrical conductivity | electrical conductivity | doping | doping | transistors | transistors | photodectors | photodectors | photovoltaics | photovoltaics | luminescence | luminescence | light emitting diodes | light emitting diodes | lasers | lasers | optical phenomena | optical phenomena | photonics | photonics | ferromagnetism | ferromagnetism | magnetoresistance | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.A08 Attraction and Repulsion: The Magic of Magnets (MIT) 3.A08 Attraction and Repulsion: The Magic of Magnets (MIT)

Description

This Freshman Advising Seminar surveys the many applications of magnets and magnetism. To the Chinese and Greeks of ancient times, the attractive and repulsive forces between magnets must have seemed magical indeed. Through the ages, miraculous curative powers have been attributed to magnets, and magnets have been used by illusionists to produce "magical" effects. Magnets guided ships in the Age of Exploration and generated the electrical industry in the 19th century. Today they store information and entertainment on disks and tapes, and produce sound in speakers, images on TV screens, rotation in motors, and levitation in high-speed trains. Students visit various MIT projects related to magnets (including superconducting electromagnets) and read about and discuss the history, legends, p This Freshman Advising Seminar surveys the many applications of magnets and magnetism. To the Chinese and Greeks of ancient times, the attractive and repulsive forces between magnets must have seemed magical indeed. Through the ages, miraculous curative powers have been attributed to magnets, and magnets have been used by illusionists to produce "magical" effects. Magnets guided ships in the Age of Exploration and generated the electrical industry in the 19th century. Today they store information and entertainment on disks and tapes, and produce sound in speakers, images on TV screens, rotation in motors, and levitation in high-speed trains. Students visit various MIT projects related to magnets (including superconducting electromagnets) and read about and discuss the history, legends, p

Subjects

magnetism | magnetism | electromagnetic | electromagnetic | electromagnetism | electromagnetism | freshman seminar | freshman seminar | magnetic field | magnetic field | Mr. Magnet | Mr. Magnet | levitation | levitation | hard disk | hard disk | magnetoptic | magnetoptic | ferromagnetic | ferromagnetic | ferromagnetism | ferromagnetism | imaging | imaging | SQUID | SQUID | biomagnetism | biomagnetism | NMR | NMR

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.014 Materials Laboratory (MIT) 3.014 Materials Laboratory (MIT)

Description

This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/Vis and force spectroscopy), and degre This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/Vis and force spectroscopy), and degre

Subjects

electron | electron | electronic properties | electronic properties | magnetism | magnetism | magentic properties | magentic properties | structure | structure | crystal | crystal | lattice | lattice | energy | energy | thermodynamics | thermodynamics | differential scanning calorimetry (DSC) | differential scanning calorimetry (DSC) | x-ray diffraction (XRD) | x-ray diffraction (XRD) | scanning probe microscopy (AFM | scanning probe microscopy (AFM | STM) | STM) | scanning electron microscopy (SEM) | scanning electron microscopy (SEM) | UV/Vis | UV/Vis | Raman spectroscopy | Raman spectroscopy | FTIR spectroscopy | FTIR spectroscopy | x-ray photoelectron spectroscopy (XPS) | x-ray photoelectron spectroscopy (XPS) | vibrating sample magnetometry (VSM) | vibrating sample magnetometry (VSM) | dynamic light scattering (DLS) | dynamic light scattering (DLS) | phonon | phonon | quantum | quantum | quantum mechanics | quantum mechanics | radiation | radiation | battery | battery | fuel cell | fuel cell | ferromagnetism | ferromagnetism | ferromagnetic | ferromagnetic | polymer | polymer | glass | glass | corrosion | corrosion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.014 Materials Laboratory (MIT) 3.014 Materials Laboratory (MIT)

Description

This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/Vis and force spectroscopy), and degre This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/Vis and force spectroscopy), and degre

Subjects

electron | electron | electronic properties | electronic properties | magnetism | magnetism | magentic properties | magentic properties | structure | structure | crystal | crystal | lattice | lattice | energy | energy | thermodynamics | thermodynamics | differential scanning calorimetry (DSC) | differential scanning calorimetry (DSC) | x-ray diffraction (XRD) | x-ray diffraction (XRD) | scanning probe microscopy (AFM | scanning probe microscopy (AFM | STM) | STM) | scanning electron microscopy (SEM) | scanning electron microscopy (SEM) | UV/Vis | UV/Vis | Raman spectroscopy | Raman spectroscopy | FTIR spectroscopy | FTIR spectroscopy | x-ray photoelectron spectroscopy (XPS) | x-ray photoelectron spectroscopy (XPS) | vibrating sample magnetometry (VSM) | vibrating sample magnetometry (VSM) | dynamic light scattering (DLS) | dynamic light scattering (DLS) | phonon | phonon | quantum | quantum | quantum mechanics | quantum mechanics | radiation | radiation | battery | battery | fuel cell | fuel cell | ferromagnetism | ferromagnetism | ferromagnetic | ferromagnetic | polymer | polymer | glass | glass | corrosion | corrosion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT) Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance. This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | electrical | optical | and magnetic devices | microstructural characteristics of materials | microstructural characteristics of materials | device-motivated approach | device-motivated approach | emerging technologies | emerging technologies | physical phenomena | physical phenomena | electrical conductivity | electrical conductivity | doping | doping | transistors | transistors | photodectors | photodectors | photovoltaics | photovoltaics | luminescence | luminescence | light emitting diodes | light emitting diodes | lasers | lasers | optical phenomena | optical phenomena | photonics | photonics | ferromagnetism | ferromagnetism | magnetoresistance | magnetoresistance | electrical devices | electrical devices | optical devices | optical devices | magnetic devices | magnetic devices | materials | materials | device applications | device applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.A08 Attraction and Repulsion: The Magic of Magnets (MIT)

Description

This Freshman Advising Seminar surveys the many applications of magnets and magnetism. To the Chinese and Greeks of ancient times, the attractive and repulsive forces between magnets must have seemed magical indeed. Through the ages, miraculous curative powers have been attributed to magnets, and magnets have been used by illusionists to produce "magical" effects. Magnets guided ships in the Age of Exploration and generated the electrical industry in the 19th century. Today they store information and entertainment on disks and tapes, and produce sound in speakers, images on TV screens, rotation in motors, and levitation in high-speed trains. Students visit various MIT projects related to magnets (including superconducting electromagnets) and read about and discuss the history, legends, p

Subjects

magnetism | electromagnetic | electromagnetism | freshman seminar | magnetic field | Mr. Magnet | levitation | hard disk | magnetoptic | ferromagnetic | ferromagnetism | imaging | SQUID | biomagnetism | NMR

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Enhancing Physics Knowledge for Teaching – Magnetic materials

Description

In this session we are going to study some of the properties of magnetic materials.

Subjects

magnetism | paramagnetism | ferromagnetism | electromagnetism | diamagnetism | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.014 Materials Laboratory (MIT)

Description

This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/Vis and force spectroscopy), and degre

Subjects

electron | electronic properties | magnetism | magentic properties | structure | crystal | lattice | energy | thermodynamics | differential scanning calorimetry (DSC) | x-ray diffraction (XRD) | scanning probe microscopy (AFM | STM) | scanning electron microscopy (SEM) | UV/Vis | Raman spectroscopy | FTIR spectroscopy | x-ray photoelectron spectroscopy (XPS) | vibrating sample magnetometry (VSM) | dynamic light scattering (DLS) | phonon | quantum | quantum mechanics | radiation | battery | fuel cell | ferromagnetism | ferromagnetic | polymer | glass | corrosion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance | electrical devices | optical devices | magnetic devices | materials | device applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.014 Materials Laboratory (MIT)

Description

This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/Vis and force spectroscopy), and degre

Subjects

electron | electronic properties | magnetism | magentic properties | structure | crystal | lattice | energy | thermodynamics | differential scanning calorimetry (DSC) | x-ray diffraction (XRD) | scanning probe microscopy (AFM | STM) | scanning electron microscopy (SEM) | UV/Vis | Raman spectroscopy | FTIR spectroscopy | x-ray photoelectron spectroscopy (XPS) | vibrating sample magnetometry (VSM) | dynamic light scattering (DLS) | phonon | quantum | quantum mechanics | radiation | battery | fuel cell | ferromagnetism | ferromagnetic | polymer | glass | corrosion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata