Searching for fine : 161 results found | RSS Feed for this search

5.841 Crystal Structure Refinement (MIT) 5.841 Crystal Structure Refinement (MIT)

Description

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules. This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.Subjects

chemistry | chemistry | crystal structure refinement | crystal structure refinement | practical aspects | practical aspects | crystal structure determination | crystal structure determination | data collection | data collection | strategies | strategies | data reduction | data reduction | refinement problems | refinement problems | organic | organic | inorganic | inorganic | molecules | molecules | SHELXL | SHELXL | hydrogen atoms | hydrogen atoms | disorder | disorder | pseudo symmetry | pseudo symmetry | merohedral twins | merohedral twins | pseudo-merohedral twins | pseudo-merohedral twins | twinning | twinning | non-merohedral twins | non-merohedral twins | PLATON | PLATONLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.725 Algebraic Geometry (MIT) 18.725 Algebraic Geometry (MIT)

Description

This is the first semester of a two-semester sequence on Algebraic Geometry. The goal of the course is to introduce the basic notions and techniques of modern algebraic geometry. It covers fundamental notions and results about algebraic varieties over an algebraically closed field; relations between complex algebraic varieties and complex analytic varieties; and examples with emphasis on algebraic curves and surfaces. This course is an introduction to the language of schemes and properties of morphisms. This is the first semester of a two-semester sequence on Algebraic Geometry. The goal of the course is to introduce the basic notions and techniques of modern algebraic geometry. It covers fundamental notions and results about algebraic varieties over an algebraically closed field; relations between complex algebraic varieties and complex analytic varieties; and examples with emphasis on algebraic curves and surfaces. This course is an introduction to the language of schemes and properties of morphisms.Subjects

algebraic geometry | algebraic geometry | Zariski topology | Zariski topology | Product Topology | Product Topology | Affine Varieties | Affine Varieties | Projective Varieties | Projective Varieties | Noether Normalization | Noether Normalization | Affine Morphisms | Affine Morphisms | Finite Morphisms | Finite Morphisms | Sheaves | Sheaves | Bezout’s Theorem | Bezout’s Theorem | Kahler Differentials | Kahler Differentials | Canonical Bundles | Canonical Bundles | Riemann-Hurwitz Formula | Riemann-Hurwitz Formula | Chevalley’s Theorem | Chevalley’s Theorem | Bertini’s Theorem | Bertini’s TheoremLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.067 Crystal Structure Refinement (MIT) 5.067 Crystal Structure Refinement (MIT)

Description

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules. This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.Subjects

chemistry | chemistry | crystal structure refinement | crystal structure refinement | practical aspects | practical aspects | crystal structure determination | crystal structure determination | data collection | data collection | strategies | strategies | data reduction | data reduction | refinement problems | refinement problems | organic | organic | inorganic | inorganic | molecules | molecules | SHELXL | SHELXL | hydrogen atoms | hydrogen atoms | disorder | disorder | pseudo symmetry | pseudo symmetry | merohedral twins | merohedral twins | pseudo-merohedral twins | pseudo-merohedral twins | twinning | twinning | non-merohedral twins | non-merohedral twins | PLATON | PLATONLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Wavelets are localized basis functions, good for representing short-time events. The coefficients at each scale are filtered and subsampled to give coefficients at the next scale. This is Mallat's pyramid algorithm for multiresolution, connecting wavelets to filter banks. Wavelets and multiscale algorithms for compression and signal/image processing are developed. Subject is project-based for engineering and scientific applications. Wavelets are localized basis functions, good for representing short-time events. The coefficients at each scale are filtered and subsampled to give coefficients at the next scale. This is Mallat's pyramid algorithm for multiresolution, connecting wavelets to filter banks. Wavelets and multiscale algorithms for compression and signal/image processing are developed. Subject is project-based for engineering and scientific applications.Subjects

Discrete-time filters | Discrete-time filters | convolution | convolution | Fourier transform | Fourier transform | owpass and highpass filters | owpass and highpass filters | Sampling rate change operations | Sampling rate change operations | upsampling and downsampling | upsampling and downsampling | ractional sampling | ractional sampling | interpolation | interpolation | Filter Banks | Filter Banks | time domain (Haar example) and frequency domain | time domain (Haar example) and frequency domain | conditions for alias cancellation and no distortion | conditions for alias cancellation and no distortion | perfect reconstruction | perfect reconstruction | halfband filters and possible factorizations | halfband filters and possible factorizations | Modulation and polyphase representations | Modulation and polyphase representations | Noble identities | Noble identities | block Toeplitz matrices and block z-transforms | block Toeplitz matrices and block z-transforms | polyphase examples | polyphase examples | Matlab wavelet toolbox | Matlab wavelet toolbox | Orthogonal filter banks | Orthogonal filter banks | paraunitary matrices | paraunitary matrices | orthogonality condition (Condition O) in the time domain | orthogonality condition (Condition O) in the time domain | modulation domain and polyphase domain | modulation domain and polyphase domain | Maxflat filters | Maxflat filters | Daubechies and Meyer formulas | Daubechies and Meyer formulas | Spectral factorization | Spectral factorization | Multiresolution Analysis (MRA) | Multiresolution Analysis (MRA) | requirements for MRA | requirements for MRA | nested spaces and complementary spaces; scaling functions and wavelets | nested spaces and complementary spaces; scaling functions and wavelets | Refinement equation | Refinement equation | iterative and recursive solution techniques | iterative and recursive solution techniques | infinite product formula | infinite product formula | filter bank approach for computing scaling functions and wavelets | filter bank approach for computing scaling functions and wavelets | Orthogonal wavelet bases | Orthogonal wavelet bases | connection to orthogonal filters | connection to orthogonal filters | orthogonality in the frequency domain | orthogonality in the frequency domain | Biorthogonal wavelet bases | Biorthogonal wavelet bases | Mallat pyramid algorithm | Mallat pyramid algorithm | Accuracy of wavelet approximations (Condition A) | Accuracy of wavelet approximations (Condition A) | vanishing moments | vanishing moments | polynomial cancellation in filter banks | polynomial cancellation in filter banks | Smoothness of wavelet bases | Smoothness of wavelet bases | convergence of the cascade algorithm (Condition E) | convergence of the cascade algorithm (Condition E) | splines | splines | Bases vs. frames | Bases vs. frames | Signal and image processing | Signal and image processing | finite length signals | finite length signals | boundary filters and boundary wavelets | boundary filters and boundary wavelets | wavelet compression algorithms | wavelet compression algorithms | Lifting | Lifting | ladder structure for filter banks | ladder structure for filter banks | factorization of polyphase matrix into lifting steps | factorization of polyphase matrix into lifting steps | lifting form of refinement equationSec | lifting form of refinement equationSec | Wavelets and subdivision | Wavelets and subdivision | nonuniform grids | nonuniform grids | multiresolution for triangular meshes | multiresolution for triangular meshes | representation and compression of surfaces | representation and compression of surfaces | Numerical solution of PDEs | Numerical solution of PDEs | Galerkin approximation | Galerkin approximation | wavelet integrals (projection coefficients | moments and connection coefficients) | wavelet integrals (projection coefficients | moments and connection coefficients) | convergence | convergence | Subdivision wavelets for integral equations | Subdivision wavelets for integral equations | Compression and convergence estimates | Compression and convergence estimates | M-band wavelets | M-band wavelets | DFT filter banks and cosine modulated filter banks | DFT filter banks and cosine modulated filter banks | Multiwavelets | MultiwaveletsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataLillian Tibbs, arrested for stealing a dress Lillian Tibbs, arrested for stealing a dress

Description

Subjects

portrait | portrait | blackandwhite | blackandwhite | woman | woman | blur | blur | eye | eye | face | face | hat | hat | sepia | sepia | hair | hair | nose | nose | chair | chair | dress | dress | fine | fine | grain | grain | custody | custody | blouse | blouse | clothes | clothes | criminal | criminal | crime | crime | photograph | photograph | mysterious | mysterious | mugshot | mugshot | unusual | unusual | ww1 | ww1 | scratch | scratch | theft | theft | seated | seated | policestation | policestation | firstworldwar | firstworldwar | cardigan | cardigan | youngwoman | youngwoman | attentive | attentive | accused | accused | fraud | fraud | arrested | arrested | stealing | stealing | prisoner | prisoner | homefront | homefront | secretlife | secretlife | fascinating | fascinating | digitalimage | digitalimage | blyth | blyth | sixmonths | sixmonths | larceny | larceny | frill | frill | blackborder | blackborder | northshields | northshields | transcription | transcription | socialhistory | socialhistory | £5 | £5 | newsreport | newsreport | courtcase | courtcase | stolenproperty | stolenproperty | criminalrecord | criminalrecord | publicrecords | publicrecords | goodbehaviour | goodbehaviour | neutralbackground | neutralbackground | pettylarceny | pettylarceny | newspaperreport | newspaperreport | 190216 | 190216 | northshieldspolicecourt | northshieldspolicecourt | £5fine | £5fine | northshieldspolicestation | northshieldspolicestation | theshieldsdailynews | theshieldsdailynews | northshieldslocalstudieslibrary | northshieldslocalstudieslibrary | 19ripponterrace | 19ripponterrace | criminalfacesofnorthshieldsfirstworldwar | criminalfacesofnorthshieldsfirstworldwar | microfilmcopies | microfilmcopies | 14september1914 | 14september1914 | mrsagcolledge | mrsagcolledge | detmason | detmason | shieldspolice | shieldspolice | lilliantibbs | lilliantibbs | blythwoman | blythwoman | 12september1914 | 12september1914License

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.067 Crystal Structure Refinement (MIT) 5.067 Crystal Structure Refinement (MIT)

Description

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules. This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.Subjects

chemistry | chemistry | crystal structure refinement | crystal structure refinement | practical aspects | practical aspects | crystal structure determination | crystal structure determination | data collection | data collection | strategies | strategies | data reduction | data reduction | refinement problems | refinement problems | organic | organic | inorganic | inorganic | molecules | molecules | SHELXL | SHELXL | hydrogen atoms | hydrogen atoms | disorder | disorder | pseudo symmetry | pseudo symmetry | merohedral twins | merohedral twins | pseudo-merohedral twins | pseudo-merohedral twins | twinning | twinning | non-merohedral twins | non-merohedral twins | PLATON | PLATONLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata21L.015 Introduction to Media Studies (MIT) 21L.015 Introduction to Media Studies (MIT)

Description

Introduction to Media Studies is designed for students who have grown up in a rapidly changing global multimedia environment and want to become more literate and critical consumers and producers of media. Through an interdisciplinary comparative and historical lens, the course defines "media" broadly as including oral, print, performance, photographic, broadcast, cinematic, and digital cultural forms and practices. The course looks at the nature of mediated communication, the functions of media, the history of transformations in media and the institutions that help define media's place in society. This year’s course will focus on issues of network culture and media convergence, addressing such subjects as Intellectual Property, peer2peer authoring, blogging, and game modification. Introduction to Media Studies is designed for students who have grown up in a rapidly changing global multimedia environment and want to become more literate and critical consumers and producers of media. Through an interdisciplinary comparative and historical lens, the course defines "media" broadly as including oral, print, performance, photographic, broadcast, cinematic, and digital cultural forms and practices. The course looks at the nature of mediated communication, the functions of media, the history of transformations in media and the institutions that help define media's place in society. This year’s course will focus on issues of network culture and media convergence, addressing such subjects as Intellectual Property, peer2peer authoring, blogging, and game modification.Subjects

Comparative Media Studies | Comparative Media Studies | global multimedia environment | global multimedia environment | literate | literate | critical | critical | consumers | consumers | producers | producers | interdisciplinary | interdisciplinary | comparative | comparative | historical | historical | lens | lens | the course defines oral | the course defines oral | print | print | performance | performance | photographic | photographic | broadcast | broadcast | cinematic | cinematic | digital | digital | cultural | cultural | forms | forms | practices | practices | mediated communication | mediated communication | functions | functions | society | society | network culture | network culture | media convergence | media convergence | Intellectual Property | Intellectual Property | peer2peer authoring | peer2peer authoring | blogging | blogging | game modification | game modification | lens | the course defines oral | lens | the course defines oralLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata.... is actually Navan .... is actually Navan

Description

Subjects

eason | eason | easonson | easonson | easoncollection | easoncollection | easonphotographiccollection | easonphotographiccollection | glassnegative | glassnegative | 20thcentury | 20thcentury | nationallibraryofireland | nationallibraryofireland | street | street | horses | horses | carts | carts | mangans | mangans | arch | arch | peterfinegan | peterfinegan | navanmedical | navanmedical | possiblecataloguecorrection | possiblecataloguecorrection | navan | navan | ludlowstreet | ludlowstreet | locationidentified | locationidentified | countymeath | countymeath | navancountymeath | navancountymeath | mangan | mangan | finegan | finegan | farrell | farrellLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers algebraic approaches to electromagnetism and nano-photonics. Topics include photonic crystals, waveguides, perturbation theory, diffraction, computational methods, applications to integrated optical devices, and fiber-optic systems. Emphasis is placed on abstract algebraic approaches rather than detailed solutions of partial differential equations, the latter being done by computers. This course covers algebraic approaches to electromagnetism and nano-photonics. Topics include photonic crystals, waveguides, perturbation theory, diffraction, computational methods, applications to integrated optical devices, and fiber-optic systems. Emphasis is placed on abstract algebraic approaches rather than detailed solutions of partial differential equations, the latter being done by computers.Subjects

linear algebra | linear algebra | eigensystems for Maxwell's equations | eigensystems for Maxwell's equations | symmetry groups | symmetry groups | representation theory | representation theory | Bloch's theorem | Bloch's theorem | numerical eigensolver methods | numerical eigensolver methods | time and frequency-domain computation | time and frequency-domain computation | perturbation theory | perturbation theory | coupled-mode theories | coupled-mode theories | waveguide theory | waveguide theory | adiabatic transitions | adiabatic transitions | Optical phenomena | Optical phenomena | photonic crystals | photonic crystals | band gaps | band gaps | anomalous diffraction | anomalous diffraction | mechanisms for optical confinement | mechanisms for optical confinement | optical fibers | optical fibers | integrated optical devices | integrated optical devicesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata[Seatrain Louisiana at Refinery Dock, Seatrain Lines]

Description

Subjects

ship | shipping | refinery | loadingdocks | refineries | hoistingmachinery | seatrainlines | railroadtankcars | seatrainlouisiana | ssseatrainlouisianaLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.725 Algebraic Geometry (MIT)

Description

This is the first semester of a two-semester sequence on Algebraic Geometry. The goal of the course is to introduce the basic notions and techniques of modern algebraic geometry. It covers fundamental notions and results about algebraic varieties over an algebraically closed field; relations between complex algebraic varieties and complex analytic varieties; and examples with emphasis on algebraic curves and surfaces. This course is an introduction to the language of schemes and properties of morphisms.Subjects

algebraic geometry | Zariski topology | Product Topology | Affine Varieties | Projective Varieties | Noether Normalization | Affine Morphisms | Finite Morphisms | Sheaves | ?s Theorem | Kahler Differentials | Canonical Bundles | Riemann-Hurwitz FormulaLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.067 Crystal Structure Refinement (MIT)

Description

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.Subjects

chemistry | crystal structure refinement | practical aspects | crystal structure determination | data collection | strategies | data reduction | refinement problems | organic | inorganic | molecules | SHELXL | hydrogen atoms | disorder | pseudo symmetry | merohedral twins | pseudo-merohedral twins | twinning | non-merohedral twins | PLATONLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata15.769 Operations Strategy (MIT) 15.769 Operations Strategy (MIT)

Description

The class provides a unifying framework for analyzing strategic issues in manufacturing and service operations. Relationships between manufacturing and service companies and their suppliers, customers, and competitors are analyzed. The material also covers decisions in technology, facilities, vertical integration, human resources and other strategic areas. Means of competition such as cost, quality, and innovativeness are explored, together with an approach to make operations decisions in the era of outsourcing and globalization. The class provides a unifying framework for analyzing strategic issues in manufacturing and service operations. Relationships between manufacturing and service companies and their suppliers, customers, and competitors are analyzed. The material also covers decisions in technology, facilities, vertical integration, human resources and other strategic areas. Means of competition such as cost, quality, and innovativeness are explored, together with an approach to make operations decisions in the era of outsourcing and globalization.Subjects

operations | operations | reengineering | reengineering | process design | process design | manufacturing | manufacturing | stragegy | stragegy | supply chain | supply chain | three dimensional concurrent engineering | three dimensional concurrent engineering | charles fine | charles fine | clockspeed | clockspeed | product development | product developmentLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata22.611J Introduction to Plasma Physics I (MIT) 22.611J Introduction to Plasma Physics I (MIT)

Description

The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented. The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented.Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | controlled thermonuclear fusion | controlled thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | charged particles | charged particles | magnetic fields | magnetic fields | plasma confinement schemes | plasma confinement schemes | MHD models | MHD models | simple equilibrium | simple equilibrium | stability analysis | stability analysis | Two-fluid hydrodynamic plasma models | Two-fluid hydrodynamic plasma models | wave propagation | wave propagation | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilitiesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata22.012 Seminar: Fusion and Plasma Physics (MIT) 22.012 Seminar: Fusion and Plasma Physics (MIT)

Description

This course uses lectures and discussion to introduce the range of topics relevant to plasma physics and fusion engineering. An introductory discussion of the economic and ecological motivation for the development of fusion power is also presented. Contemporary magnetic confinement schemes, theoretical questions, and engineering considerations are presented by expert guest lecturers. Students enrolled in the course also tour the Plasma Science and Fusion Center experimental facilities. This course uses lectures and discussion to introduce the range of topics relevant to plasma physics and fusion engineering. An introductory discussion of the economic and ecological motivation for the development of fusion power is also presented. Contemporary magnetic confinement schemes, theoretical questions, and engineering considerations are presented by expert guest lecturers. Students enrolled in the course also tour the Plasma Science and Fusion Center experimental facilities.Subjects

plasma physics | plasma physics | fusion engineering | fusion engineering | fusion power | fusion power | contemporary magnetic confinement schemes | contemporary magnetic confinement schemes | Plasma Science and Fusion Center | Plasma Science and Fusion Center | ITER | ITERLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Double affine Hecke algebras (DAHA), also called Cherednik algebras, and their representations appear in many contexts: integrable systems (Calogero-Moser and Ruijsenaars models), algebraic geometry (Hilbert schemes), orthogonal polynomials, Lie theory, quantum groups, etc. In this course we will review the basic theory of DAHA and their representations, emphasizing their connections with other subjects and open problems. Double affine Hecke algebras (DAHA), also called Cherednik algebras, and their representations appear in many contexts: integrable systems (Calogero-Moser and Ruijsenaars models), algebraic geometry (Hilbert schemes), orthogonal polynomials, Lie theory, quantum groups, etc. In this course we will review the basic theory of DAHA and their representations, emphasizing their connections with other subjects and open problems.Subjects

dunkl operators | dunkl operators | cherednik | cherednik | affine algebra | affine algebra | representation theory | representation theory | hecke | hecke | knizknik-zamoldchikov | knizknik-zamoldchikov | orbifolds | orbifolds | calogero-moser space | calogero-moser space | hilbert scheme | hilbert scheme | algebra | algebra | macdonald-mehta integral | macdonald-mehta integral | integrable system | integrable systemLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata22.616 Plasma Transport Theory (MIT) 22.616 Plasma Transport Theory (MIT)

Description

This course describes the processes by which mass, momentum, and energy are transported in plasmas, with special reference to magnetic confinement fusion applications. The Fokker-Planck collision operator and its limiting forms, as well as collisional relaxation and equilibrium, are considered in detail. Special applications include a Lorentz gas, Brownian motion, alpha particles, and runaway electrons. The Braginskii formulation of classical collisional transport in general geometry based on the Fokker-Planck equation is presented. Neoclassical transport in tokamaks, which is sensitive to the details of the magnetic geometry, is considered in the high (Pfirsch-Schluter), low (banana) and intermediate (plateau) regimes of collisionality. This course describes the processes by which mass, momentum, and energy are transported in plasmas, with special reference to magnetic confinement fusion applications. The Fokker-Planck collision operator and its limiting forms, as well as collisional relaxation and equilibrium, are considered in detail. Special applications include a Lorentz gas, Brownian motion, alpha particles, and runaway electrons. The Braginskii formulation of classical collisional transport in general geometry based on the Fokker-Planck equation is presented. Neoclassical transport in tokamaks, which is sensitive to the details of the magnetic geometry, is considered in the high (Pfirsch-Schluter), low (banana) and intermediate (plateau) regimes of collisionality.Subjects

Plasmas | Plasmas | magnetic confinement fusion | magnetic confinement fusion | Fokker-Planck collision operator | Fokker-Planck collision operator | collisional relaxation and equilibrium | collisional relaxation and equilibrium | Lorentz gas | Lorentz gas | Brownian motion | Brownian motion | alpha particles | alpha particles | runaway electrons | runaway electrons | Braginskii formulation | Braginskii formulation | tokamak | tokamak | Pfirsch-Schluter | Pfirsch-Schluter | regimes of collisionality | regimes of collisionalityLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata22.611J Introduction To Plasma Physics I (MIT) 22.611J Introduction To Plasma Physics I (MIT)

Description

Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Basic plasma properties and collective behavior. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propagation in a magnetic field.Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities. A subject description tailored to fit the background and interests of the attending students distributed shortly before and at the beginning of the subject. Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Basic plasma properties and collective behavior. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propagation in a magnetic field.Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities. A subject description tailored to fit the background and interests of the attending students distributed shortly before and at the beginning of the subject.Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | thermonuclear fusion | thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | plasma confinement schemes | | plasma confinement schemes | | MHD models | MHD models | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities | 22.611 | 22.611 | 6.651 | 6.651 | 8.613 | 8.613License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata22.611J Introduction to Plasma Physics I (MIT) 22.611J Introduction to Plasma Physics I (MIT)

Description

In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magneSubjects

plasma phenomena | plasma phenomena | energy generation | energy generation | controlled thermonuclear fusion | controlled thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | charged particles | charged particles | magnetic fields | magnetic fields | plasma confinement schemes | plasma confinement schemes | MHD models | MHD models | simple equilibrium | simple equilibrium | stability analysis | stability analysis | Two-fluid hydrodynamic plasma models | Two-fluid hydrodynamic plasma models | wave propagation | wave propagation | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities | fourth state of matter | fourth state of matter | plasma state | plasma state | visible universe | visible universe | economics | economics | plasmas | plasmas | motion of charged particles | motion of charged particles | two-fluid hydrodynamic plasma models | two-fluid hydrodynamic plasma models | Debye Shielding | Debye Shielding | collective effects | collective effects | charged particle motion | charged particle motion | EM Fields | EM Fields | cross-sections | cross-sections | relaxation | relaxation | fluid plasma descriptions | fluid plasma descriptions | MHD equilibrium | MHD equilibrium | MHD dynamics | MHD dynamics | dynamics in two-fluid plasmas | dynamics in two-fluid plasmas | cold plasma waves | cold plasma waves | magnetic field | magnetic field | microscopic to fluid plasma descriptions | microscopic to fluid plasma descriptions | Vlasov-Maxwell kinetic theory.linear Landau growth | Vlasov-Maxwell kinetic theory.linear Landau growth | kinetic description of waves | kinetic description of waves | instabilities | instabilities | Vlasov-Maxwell kinetic theory | Vlasov-Maxwell kinetic theory | linear Landau growth | linear Landau growth | 22.611 | 22.611 | 6.651 | 6.651 | 8.613 | 8.613License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.325 Relativistic Quantum Field Theory III (MIT) 8.325 Relativistic Quantum Field Theory III (MIT)

Description

This course is the third and last term of the quantum field theory sequence. Its aim is the proper theoretical discussion of the physics of the standard model. Topics include: quantum chromodynamics; the Higgs phenomenon and a description of the standard model; deep-inelastic scattering and structure functions; basics of lattice gauge theory; operator products and effective theories; detailed structure of the standard model; spontaneously broken gauge theory and its quantization; instantons and theta-vacua; topological defects; introduction to supersymmetry. This course is the third and last term of the quantum field theory sequence. Its aim is the proper theoretical discussion of the physics of the standard model. Topics include: quantum chromodynamics; the Higgs phenomenon and a description of the standard model; deep-inelastic scattering and structure functions; basics of lattice gauge theory; operator products and effective theories; detailed structure of the standard model; spontaneously broken gauge theory and its quantization; instantons and theta-vacua; topological defects; introduction to supersymmetry.Subjects

gauge symmetry | gauge symmetry | confinement | confinement | renormalization | renormalization | asymptotic freedom | asymptotic freedom | anomalies | anomalies | instantons | instantons | zero modes | zero modes | gauge boson and Higgs spectrum | gauge boson and Higgs spectrum | fermion multiplets | fermion multiplets | CKM matrix | CKM matrix | unification in SU(5) and SO(10) | unification in SU(5) and SO(10) | phenomenology of Higgs sector | phenomenology of Higgs sector | lepton and baryon number violation | lepton and baryon number violation | nonperturbative (lattice) formulation | nonperturbative (lattice) formulationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataTwomey's Machine Bakery Twomey's Machine Bakery

Description

Subjects

ireland | ireland | horses | horses | people | people | dog | dog | colour | colour | quality | quality | cork | cork | dalmation | dalmation | sweetness | sweetness | carts | carts | cocork | cocork | munster | munster | drivers | drivers | fermentation | fermentation | glassnegative | glassnegative | shopkeeper | shopkeeper | undertaker | undertaker | alderman | alderman | cleanliness | cleanliness | publican | publican | johnnunan | johnnunan | kneaded | kneaded | richardburke | richardburke | moderateprices | moderateprices | shandonstreet | shandonstreet | ceylontea | ceylontea | nationallibraryofireland | nationallibraryofireland | indiantea | indiantea | corkexaminer | corkexaminer | northwestward | northwestward | o’connor | o’connor | hannahburke | hannahburke | greenhousethings | greenhousethings | directimporters | directimporters | machinemadebread | machinemadebread | ferguso’connorcollection | ferguso’connorcollection | johntwomeysons | johntwomeysons | generalgrocers | generalgrocers | machinemadecake | machinemadecake | mallowlane | mallowlane | ferguso’connorcollectionstandardtagsferguso’connor | ferguso’connorcollectionstandardtagsferguso’connor | alberttwomey | alberttwomey | bakerandgrocer | bakerandgrocer | 102shandonst | 102shandonst | denisjmurphy | denisjmurphy | kateseehan | kateseehan | highclassbread | highclassbread | vandeliveriesdaily | vandeliveriesdaily | cityandsuburbs | cityandsuburbs | finenessoftexture | finenessoftexture | flavourandmoisture | flavourandmoisture | sheehansniall | sheehansniall | terenceo’connor | terenceo’connor | 105shandonstreet | 105shandonstreet | 22cattlelane | 22cattlelane | aldermanto’connor | aldermanto’connor | bakeryteawarehouse | bakeryteawarehouse | machinebakery | machinebakeryLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.069 Crystal Structure Analysis (MIT) 5.069 Crystal Structure Analysis (MIT)

Description

This course covers the following topics: X-ray diffraction: symmetry, space groups, geometry of diffraction, structure factors, phase problem, direct methods, Patterson methods, electron density maps, structure refinement, how to grow good crystals, powder methods, limits of X-ray diffraction methods, and structure data bases. This course covers the following topics: X-ray diffraction: symmetry, space groups, geometry of diffraction, structure factors, phase problem, direct methods, Patterson methods, electron density maps, structure refinement, how to grow good crystals, powder methods, limits of X-ray diffraction methods, and structure data bases.Subjects

crystallography | crystallography | inorganic chemistry | inorganic chemistry | physical methods | physical methods | crystal structure determination | crystal structure determination | 3D structure | 3D structure | x-ray crystallagraphy | x-ray crystallagraphy | diffraction | diffraction | x-rays | x-rays | symmetry | symmetry | phasing | phasing | crystal structure | crystal structure | symmetry operations | symmetry operations | crystal lattice | crystal lattice | structure refinement | structure refinement | electron density maps | electron density maps | space group determination | space group determination | anomalous scattering | anomalous scatteringLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Find out what solid-state physics has brought to Electromagnetism in the last 20 years. This course surveys the physics and mathematics of nanophotonics—electromagnetic waves in media structured on the scale of the wavelength. Topics include computational methods combined with high-level algebraic techniques borrowed from solid-state quantum mechanics: linear algebra and eigensystems, group theory, Bloch's theorem and conservation laws, perturbation methods, and coupled-mode theories, to understand surprising optical phenomena from band gaps to slow light to nonlinear filters. Note: An earlier version of this course was published on OCW as 18.325 Topics in Applied Mathematics: Mathematical Methods in Nanophotonics, Fall 2005. Find out what solid-state physics has brought to Electromagnetism in the last 20 years. This course surveys the physics and mathematics of nanophotonics—electromagnetic waves in media structured on the scale of the wavelength. Topics include computational methods combined with high-level algebraic techniques borrowed from solid-state quantum mechanics: linear algebra and eigensystems, group theory, Bloch's theorem and conservation laws, perturbation methods, and coupled-mode theories, to understand surprising optical phenomena from band gaps to slow light to nonlinear filters. Note: An earlier version of this course was published on OCW as 18.325 Topics in Applied Mathematics: Mathematical Methods in Nanophotonics, Fall 2005.Subjects

linear algebra | linear algebra | eigensystems for Maxwell's equations | eigensystems for Maxwell's equations | symmetry groups | symmetry groups | representation theory | representation theory | Bloch's theorem | Bloch's theorem | numerical eigensolver methods | numerical eigensolver methods | time and frequency-domain computation | time and frequency-domain computation | perturbation theory | perturbation theory | coupled-mode theories | coupled-mode theories | waveguide theory | waveguide theory | adiabatic transitions | adiabatic transitions | Optical phenomena | Optical phenomena | photonic crystals | photonic crystals | band gaps | band gaps | anomalous diffraction | anomalous diffraction | mechanisms for optical confinement | mechanisms for optical confinement | optical fibers | optical fibers | integrated optical devices | integrated optical devicesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course has been designed to help students who have already obtained their Degree in Arquitectura Técnica (Quantity Surveying) improve their oral and written skills to use English in academic and professional environments as demanded by most companies worldwide. More particularly, course contents cover all four main skills, namely, listening, reading, writing and speaking with an emphasis placed on building construction core topics. This course has been designed to help students who have already obtained their Degree in Arquitectura Técnica (Quantity Surveying) improve their oral and written skills to use English in academic and professional environments as demanded by most companies worldwide. More particularly, course contents cover all four main skills, namely, listening, reading, writing and speaking with an emphasis placed on building construction core topics.Subjects

Inglés para fines específicos | Inglés para fines específicos | Discurso oral y escrito | Discurso oral y escrito | Filología inglesa | Filología inglesa | Comunicación académico profesional | Comunicación académico profesional | Ingeniería de edificación | Ingeniería de edificaciónLicense

Copyright 2009, by the Contributing Authors http://creativecommons.org/licenses/by-nc-sa/3.0/Site sourced from

http://ocw.upm.es/rss_allAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in Geophysical Systems (MIT) 12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.Subjects

phenomena | theory | and modeling of turbulence | phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata