Searching for finite automata : 13 results found | RSS Feed for this search

Readme file for Computer Science Concepts

Description

This readme file contains details of links to all the Computer Science Concepts module's material held on Jorum and information about the module as well.Subjects

ukoer | strings lecture | induction and recursion lecture | induction lecture | recursion lecture | complexity lecture | languages lecture | computer sciences concepts test | computer science concepts test | computer science concepts assignment | computer science concepts practical | introduction | computer science concepts | computer science concept | computer science | strings and languages | strings and language | string and languages | string and language | string | language | languages | finite automata | automata | finite | push down automata | push down | prolog | data structures and algorithms | data structure and algorithms | data structures and algorithm | data structure and algorithm | data structures | data structure | algorithms | algorithm | revision exercises | revision | induction and recursion | induction | recursion | turing machines | turing machine | turing | machine | machines | complexity | grammar | grammar and languages | grammar and language | introduction lecture | computer science concepts lecture | computer science concept lecture | computer science lecture | strings and languages lecture | strings and language lecture | string and languages lecture | string and language lecture | string lecture | language lecture | finite automata lecture | automata lecture | finite lecture | push down automata lecture | push down lecture | prolog lecture | data structures and algorithms lecture | data structure and algorithms lecture | data structures and algorithm lecture | data structure and algorithm lecture | data structures lecture | data structure lecture | algorithms lecture | algorithm lecture | revision exercises lecture | revision lecture | turing machines lecture | turing machine lecture | turing lecture | machine lecture | machines lecture | computer science class test | computer science concept class test | computer science concepts class test | strings and languages class test | strings and language class test | string and languages class test | string and language class test | string class test | language class test | languages class test | introduction class test | grammar lecture | grammar and languages lecture | grammar and language lecture | computer science assignment | computer science concept assignment | strings and languages assignment | strings and language assignment | string and languages assignment | string and language assignment | string assignment | language assignment | languages assignment | finite automata class test | automata class test | finite class test | finite automata assignment | automata assignment | finite assignment | push down automata class test | push down class test | push down automata assignment | push down assignment | prolog class test | data structures and algorithms class test | data structure and algorithms class test | data structures and algorithm class test | data structure and algorithm class test | data structures class test | data structure class test | algorithms class test | algorithm class test | computer science practical | computer science concept practical | data structures and algorithms practical | data structure and algorithms practical | data structures and algorithm practical | data structure and algorithm practical | data structures practical | data structure practical | algorithms practical | algorithm practical | revision exercises class test | revision class test | induction and recursion class test | induction class test | recursion class test | induction and recursion assignment | induction assignment | recursion assignment | turing machines class test | turing machine class test | turing class test | machine class test | machines class test | turing machines assignment | turing machine assignment | turing assignment | machine assignment | machines assignment | complexity class test | grammar class test | grammar and languages class test | grammar and language class test | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is offered to undergraduates and introduces basic mathematical models of computation and the finite representation of infinite objects. The course is slower paced than 6.840J/18.404J. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems. This course is offered to undergraduates and introduces basic mathematical models of computation and the finite representation of infinite objects. The course is slower paced than 6.840J/18.404J. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems.Subjects

automata | automata | computability | computability | complexity | complexity | mathematical models | mathematical models | computation | computation | finite representation | finite representation | infinite objects | infinite objects | finite automata | finite automata | regular languages | regular languages | context-free languages | context-free languages | Turing machines | Turing machines | partial recursive functions | partial recursive functions | Church's Thesis | Church's Thesis | undecidability | undecidability | reducibility | reducibility | completeness | completeness | time complexity | time complexity | NP-completeness | NP-completeness | probabilistic computation | probabilistic computation | interactive proof systems | interactive proof systems | 6.045 | 6.045 | 18.400 | 18.400License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course introduces basic mathematical models of computation and the finite representation of infinite objects. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems. This course introduces basic mathematical models of computation and the finite representation of infinite objects. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems.Subjects

automata | automata | computability | computability | complexity | complexity | mathematical models | mathematical models | computation | computation | finite representation | finite representation | infinite objects | infinite objects | finite automata | finite automata | regular languages | regular languages | context-free languages | context-free languages | Turing machines | Turing machines | partial recursive functions | partial recursive functions | Church's Thesis | Church's Thesis | undecidability | undecidability | reducibility | reducibility | completeness | completeness | time complexity | time complexity | NP-completeness | NP-completeness | probabilistic computation | probabilistic computation | interactive proof systems | interactive proof systems | 6.045 | 6.045 | 18.400 | 18.400License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course provides a challenging introduction to some of the central ideas of theoretical computer science. Beginning in antiquity, the course will progress through finite automata, circuits and decision trees, Turing machines and computability, efficient algorithms and reducibility, the P versus NP problem, NP-completeness, the power of randomness, cryptography and one-way functions, computational learning theory, and quantum computing. It examines the classes of problems that can and cannot be solved by various kinds of machines. It tries to explain the key differences between computational models that affect their power. This course provides a challenging introduction to some of the central ideas of theoretical computer science. Beginning in antiquity, the course will progress through finite automata, circuits and decision trees, Turing machines and computability, efficient algorithms and reducibility, the P versus NP problem, NP-completeness, the power of randomness, cryptography and one-way functions, computational learning theory, and quantum computing. It examines the classes of problems that can and cannot be solved by various kinds of machines. It tries to explain the key differences between computational models that affect their power.Subjects

finite automata | finite automata | Turing machine | Turing machine | halting problem | halting problem | computability | computability | computational complexity | computational complexity | polynomial time | polynomial time | P | P | NP | NP | NP complete | NP complete | probabilistic algorithms | probabilistic algorithms | private-key cryptography | private-key cryptography | public-key cryptography | public-key cryptography | randomness | randomnessLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course provides a challenging introduction to some of the central ideas of theoretical computer science. It attempts to present a vision of "computer science beyond computers": that is, CS as a set of mathematical tools for understanding complex systems such as universes and minds. Beginning in antiquity—with Euclid's algorithm and other ancient examples of computational thinking—the course will progress rapidly through propositional logic, Turing machines and computability, finite automata, Gödel's theorems, efficient algorithms and reducibility, NP-completeness, the P versus NP problem, decision trees and other concrete computational models, the power of randomness, cryptography and one-way functions, computational theories of learning, interactive proofs, and q This course provides a challenging introduction to some of the central ideas of theoretical computer science. It attempts to present a vision of "computer science beyond computers": that is, CS as a set of mathematical tools for understanding complex systems such as universes and minds. Beginning in antiquity—with Euclid's algorithm and other ancient examples of computational thinking—the course will progress rapidly through propositional logic, Turing machines and computability, finite automata, Gödel's theorems, efficient algorithms and reducibility, NP-completeness, the P versus NP problem, decision trees and other concrete computational models, the power of randomness, cryptography and one-way functions, computational theories of learning, interactive proofs, and qSubjects

computer science | computer science | theoretical computer science | theoretical computer science | logic | logic | turing machines | turing machines | computability | computability | finite automata | finite automata | godel | godel | complexity | complexity | polynomial time | polynomial time | efficient algorithms | efficient algorithms | reducibility | reducibility | p and np | p and np | np completeness | np completeness | private key cryptography | private key cryptography | public key cryptography | public key cryptography | pac learning | pac learning | quantum computing | quantum computing | quantum algorithms | quantum algorithmsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Finite Automata

Description

This lecture forms part of the "Finite Automata" topic of the Computer Science Concepts module.Subjects

ukoer | computer science | computer science concept | computer science concepts | finite automata | automata | finite | computer science lecture | computer science concept lecture | computer science concepts lecture | finite automata lecture | automata lecture | finite lecture | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Finite Automata

Description

This class test forms part of the "Finite Automata" topic of the Computer Science Concepts module.Subjects

ukoer | computer sciences concepts test | computer science | computer science concept | computer science concepts | finite automata | automata | finite | computer science class test | computer science concept class test | computer science concepts class test | finite automata class test | automata class test | finite class test | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Finite Automata

Description

This class test forms part of the "Finite Automata" topic of the Computer Science Concepts module.Subjects

ukoer | computer sciences concepts test | computer science | computer science concept | computer science concepts | finite automata | automata | finite | computer science class test | computer science concept class test | computer science concepts class test | finite automata class test | automata class test | finite class test | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Finite Automata

Description

This assignment forms part of the "Finite Automata" topic of the Computer Science Concepts module.Subjects

ukoer | computer science | computer science concept | computer science concepts | finite automata | automata | finite | computer science assignment | computer science concepts assignment | finite automata assignment | finite assignment | automata assignment | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.045J Automata, Computability, and Complexity (MIT)

Description

This course is offered to undergraduates and introduces basic mathematical models of computation and the finite representation of infinite objects. The course is slower paced than 6.840J/18.404J. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems.Subjects

automata | computability | complexity | mathematical models | computation | finite representation | infinite objects | finite automata | regular languages | context-free languages | Turing machines | partial recursive functions | Church's Thesis | undecidability | reducibility | completeness | time complexity | NP-completeness | probabilistic computation | interactive proof systems | 6.045 | 18.400License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.045J Automata, Computability, and Complexity (MIT)

Description

This course introduces basic mathematical models of computation and the finite representation of infinite objects. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems.Subjects

automata | computability | complexity | mathematical models | computation | finite representation | infinite objects | finite automata | regular languages | context-free languages | Turing machines | partial recursive functions | Church's Thesis | undecidability | reducibility | completeness | time complexity | NP-completeness | probabilistic computation | interactive proof systems | 6.045 | 18.400License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.045J Automata, Computability, and Complexity (MIT)

Description

This course provides a challenging introduction to some of the central ideas of theoretical computer science. Beginning in antiquity, the course will progress through finite automata, circuits and decision trees, Turing machines and computability, efficient algorithms and reducibility, the P versus NP problem, NP-completeness, the power of randomness, cryptography and one-way functions, computational learning theory, and quantum computing. It examines the classes of problems that can and cannot be solved by various kinds of machines. It tries to explain the key differences between computational models that affect their power.Subjects

finite automata | Turing machine | halting problem | computability | computational complexity | polynomial time | P | NP | NP complete | probabilistic algorithms | private-key cryptography | public-key cryptography | randomnessLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.080 Great Ideas in Theoretical Computer Science (MIT)

Description

This course provides a challenging introduction to some of the central ideas of theoretical computer science. It attempts to present a vision of "computer science beyond computers": that is, CS as a set of mathematical tools for understanding complex systems such as universes and minds. Beginning in antiquity—with Euclid's algorithm and other ancient examples of computational thinking—the course will progress rapidly through propositional logic, Turing machines and computability, finite automata, Gödel's theorems, efficient algorithms and reducibility, NP-completeness, the P versus NP problem, decision trees and other concrete computational models, the power of randomness, cryptography and one-way functions, computational theories of learning, interactive proofs, and qSubjects

computer science | theoretical computer science | logic | turing machines | computability | finite automata | godel | complexity | polynomial time | efficient algorithms | reducibility | p and np | np completeness | private key cryptography | public key cryptography | pac learning | quantum computing | quantum algorithmsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata