Searching for flexibility : 18 results found | RSS Feed for this search

1

ESD.71 Engineering Systems Analysis for Design (MIT) ESD.71 Engineering Systems Analysis for Design (MIT)

Description

Engineering systems design must have the flexibility to take advantage of new opportunities while avoiding disasters. This subject develops "real options" analysis to create design flexibility and measure its value so that it can be incorporated into system optimization. It builds on essential concepts of system models, decision analysis, and financial concepts. Emphasis is placed on calculating value of real options with special attention given to efficient analysis and practical applications. The material is organized and presented to deal with the contextual reality of technological systems, that substantially distinguishes the analysis of real options in engineering systems from that of financial options. Note This MIT OpenCourseWare site is based on the materials from Profes Engineering systems design must have the flexibility to take advantage of new opportunities while avoiding disasters. This subject develops "real options" analysis to create design flexibility and measure its value so that it can be incorporated into system optimization. It builds on essential concepts of system models, decision analysis, and financial concepts. Emphasis is placed on calculating value of real options with special attention given to efficient analysis and practical applications. The material is organized and presented to deal with the contextual reality of technological systems, that substantially distinguishes the analysis of real options in engineering systems from that of financial options. Note This MIT OpenCourseWare site is based on the materials from Profes

Subjects

real options | real options | flexibility | flexibility | flexible design | flexible design | engineering systems | engineering systems | complex projects | complex projects | evaluation over time | evaluation over time | risk | risk | uncertainty | uncertainty | valuation | valuation | timing | timing | uncertainty modeling | uncertainty modeling | flexibility valuation | flexibility valuation | methods | methods | design analysis | design analysis | lattice analysis | lattice analysis | monte carlo simulation | monte carlo simulation | flexibility identification. | flexibility identification.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ESD.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.892J Space System Architecture and Design (MIT) 16.892J Space System Architecture and Design (MIT)

Description

Space System Architecture and Design incorporates lectures, readings and discussion on topics in the architecting of space systems. The class reviews existing space system architectures and the classical methods of designing them. Sessions focus on multi-attribute utility theory as a new design paradigm for space systems, when combined with integrated concurrent engineering and efficient searches of large architectural tradespaces. Designing for flexibility and uncertainty is considered, as are policy and product development issues. Space System Architecture and Design incorporates lectures, readings and discussion on topics in the architecting of space systems. The class reviews existing space system architectures and the classical methods of designing them. Sessions focus on multi-attribute utility theory as a new design paradigm for space systems, when combined with integrated concurrent engineering and efficient searches of large architectural tradespaces. Designing for flexibility and uncertainty is considered, as are policy and product development issues.

Subjects

space system | space system | space system architecture | space system architecture | space architecting | space architecting | uncertainties | uncertainties | space policy | space policy | robustness | robustness | flexibility | flexibility | optimality | optimality | tradespace analysis | tradespace analysis | quality function deployment | quality function deployment | multi-attribute utility theory | multi-attribute utility theory | n-squared | n-squared | design structure matrix | design structure matrix | multi-attribution tradespace exploration | multi-attribution tradespace exploration | MATE | MATE | MATE-CON | MATE-CON | satellite | satellite | classes of space system | classes of space system | XTOS | XTOS | spacetug | spacetug | GINA | GINA | pareto fronts | pareto fronts | engineering design process | engineering design process | optimization methods | optimization methods | genetic algorithms | genetic algorithms | simulated annealing | simulated annealing | MMDOSA | MMDOSA | distributed space systems design optimization | distributed space systems design optimization | clarity test | clarity test | taxonomy of uncertainty | taxonomy of uncertainty | treatment of uncertainty | treatment of uncertainty | irreducible uncertainty | irreducible uncertainty | portfolio theory | portfolio theory | portfolio applications | portfolio applications | taxonomy of flexibility | taxonomy of flexibility | on-orbit servicing | on-orbit servicing | US national space policy | US national space policy | space policy heuristics | space policy heuristics | policy architectures | policy architectures | 16.892 | 16.892 | ESD.353 | ESD.353

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.71 Engineering Systems Analysis for Design (MIT)

Description

Engineering systems design must have the flexibility to take advantage of new opportunities while avoiding disasters. This subject develops "real options" analysis to create design flexibility and measure its value so that it can be incorporated into system optimization. It builds on essential concepts of system models, decision analysis, and financial concepts. Emphasis is placed on calculating value of real options with special attention given to efficient analysis and practical applications. The material is organized and presented to deal with the contextual reality of technological systems, that substantially distinguishes the analysis of real options in engineering systems from that of financial options. Note This MIT OpenCourseWare site is based on the materials from Profes

Subjects

real options | flexibility | flexible design | engineering systems | complex projects | evaluation over time | risk | uncertainty | valuation | timing | uncertainty modeling | flexibility valuation | methods | design analysis | lattice analysis | monte carlo simulation | flexibility identification.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.008 Design and Manufacturing II (MIT) 2.008 Design and Manufacturing II (MIT)

Description

This course introduces you to modern manufacturing with four areas of emphasis: manufacturing processes, equipment/control, systems, and design for manufacturing. The course exposes you to integration of engineering and management disciplines for determining manufacturing rate, cost, quality and flexibility. Topics include process physics, equipment design and automation/control, quality, design for manufacturing, industrial management, and systems design and operation. Labs are integral parts of the course, and expose you to various manufacturing disciplines and practices. This course introduces you to modern manufacturing with four areas of emphasis: manufacturing processes, equipment/control, systems, and design for manufacturing. The course exposes you to integration of engineering and management disciplines for determining manufacturing rate, cost, quality and flexibility. Topics include process physics, equipment design and automation/control, quality, design for manufacturing, industrial management, and systems design and operation. Labs are integral parts of the course, and expose you to various manufacturing disciplines and practices.

Subjects

modern manufacturing | modern manufacturing | manufacturing processes | manufacturing processes | equipment/control | equipment/control | systems | systems | design for manufacturing | design for manufacturing | integration of engineering and management disciplines | integration of engineering and management disciplines | manufacturing rate | manufacturing rate | cost | cost | quality | quality | flexibility | flexibility | process physics | process physics | equipment design | equipment design | automation/control | automation/control | industrial management | industrial management | systems design and operation | systems design and operation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.008 Design and Manufacturing II (MIT) 2.008 Design and Manufacturing II (MIT)

Description

Integration of design, engineering, and management disciplines and practices for analysis and design of manufacturing enterprises. Emphasis is on the physics and stochastic nature of manufacturing processes and systems, and their effects on quality, rate, cost, and flexibility. Topics include process physics and control, design for manufacturing, and manufacturing systems. Group project requires design and fabrication of parts using mass-production and assembly methods to produce a product in quantity. Integration of design, engineering, and management disciplines and practices for analysis and design of manufacturing enterprises. Emphasis is on the physics and stochastic nature of manufacturing processes and systems, and their effects on quality, rate, cost, and flexibility. Topics include process physics and control, design for manufacturing, and manufacturing systems. Group project requires design and fabrication of parts using mass-production and assembly methods to produce a product in quantity.

Subjects

manufacturing enterprises | manufacturing enterprises | physics | physics | stochastic nature of manufacturing processes | stochastic nature of manufacturing processes | quality | quality | rate | rate | cost | cost | flexibility | flexibility | process physics | process physics | process control | process control

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.S71 Increasing Your Physical Intelligence, Enhancing Your Social Smarts (MIT) ES.S71 Increasing Your Physical Intelligence, Enhancing Your Social Smarts (MIT)

Description

The purpose of this class is to offer students a new perspective on the importance of our bodily experience to our cognitive and social lives. The curriculum is designed to foster a working appreciation for how better bodily awareness can positively affect how we feel in our bodies, carry and present ourselves for improved social sensitivity and more successful social interactions.  The purpose of this class is to offer students a new perspective on the importance of our bodily experience to our cognitive and social lives. The curriculum is designed to foster a working appreciation for how better bodily awareness can positively affect how we feel in our bodies, carry and present ourselves for improved social sensitivity and more successful social interactions. 

Subjects

physical intelligence | physical intelligence | exercise | exercise | social interactions | social interactions | training | training | balance | balance | strength | strength | flexibility | flexibility | mindfulness | mindfulness | mind and body | mind and body | cognitive development | cognitive development | self awareness | self awareness

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ES.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Resilience and adaptation in complex city systems

Description

James Simmie (Department of Planning, Oxford Brookes University) develops an evolutionary economics approach to adaptation and change in urban economies. Abstract: In this lecture, James Simmie develops one of the evolutionary economics approaches to understanding adaptation and change in the economic trajectories of urban economies. Neo-classical equilibrist versions of resilience and adaptation are rejected in favour of an evolutionary perspective. He argues in particular for an explanation based on why and how local economies adapt through time both to continual mutations and to periodic gales of creative destruction. Simmie focuses on the extent to which the "panarchy" conceptual framework can suggest testable hypotheses concerning urban and regional resilience. He explores some of

Subjects

Future | cities | urban policy and planning | resilience | adaptation | flexibility | economics | 2010-10-18 | ukoer | Future | cities | urban policy and planning | resilience | adaptation | flexibility | economics | 2010-10-18

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://rss.oucs.ox.ac.uk/manstud/futures-of-cities-audio/rss20.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.70J Engineering Economy Module (MIT) ESD.70J Engineering Economy Module (MIT)

Description

This intensive micro-subject provides the necessary skills in Microsoft® Excel spreadsheet modeling for ESD.71 – Engineering Systems Analysis for Design. Its purpose is to bring entering students up to speed on some of the advanced techniques that we routinely use in analysis. It is motivated by our experience that many students only have an introductory knowledge of Excel, and thus waste a lot of time thrashing about unproductively. Many people think they know Excel, but overlook many efficient tools – such as Data Table and Goal Seek. It is also useful for a variety of other subjects.NoteThis MIT OpenCourseWare site is based on the materials from Professor de Neufville's ESD.70J Web site. This intensive micro-subject provides the necessary skills in Microsoft® Excel spreadsheet modeling for ESD.71 – Engineering Systems Analysis for Design. Its purpose is to bring entering students up to speed on some of the advanced techniques that we routinely use in analysis. It is motivated by our experience that many students only have an introductory knowledge of Excel, and thus waste a lot of time thrashing about unproductively. Many people think they know Excel, but overlook many efficient tools – such as Data Table and Goal Seek. It is also useful for a variety of other subjects.NoteThis MIT OpenCourseWare site is based on the materials from Professor de Neufville's ESD.70J Web site.

Subjects

excel | excel | spreadsheet | spreadsheet | modeling | modeling | dynamic modeling | dynamic modeling | analysis | analysis | data table | data table | goal seek | goal seek | sensitivity analysis | sensitivity analysis | simulation | simulation | random number generator | random number generator | counting | counting | modeling uncertainties | modeling uncertainties | random variables | random variables | statistical package | statistical package | flexibility | flexibility | contingency rules | contingency rules | excel solver | excel solver | solver | solver

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.70J Engineering Economy Module (MIT) ESD.70J Engineering Economy Module (MIT)

Description

This intensive micro-subject provides the necessary skills in Microsoft® Excel spreadsheet modeling for ESD.71 Engineering Systems Analysis for Design. Its purpose is to bring entering students up to speed on some of the advanced techniques that we routinely use in analysis. It is motivated by our experience that many students only have an introductory knowledge of Excel, and thus waste a lot of time thrashing about unproductively. Many people think they know Excel, but overlook many efficient tools, such as Data Table and Goal Seek. It is also useful for a variety of other subjects. This intensive micro-subject provides the necessary skills in Microsoft® Excel spreadsheet modeling for ESD.71 Engineering Systems Analysis for Design. Its purpose is to bring entering students up to speed on some of the advanced techniques that we routinely use in analysis. It is motivated by our experience that many students only have an introductory knowledge of Excel, and thus waste a lot of time thrashing about unproductively. Many people think they know Excel, but overlook many efficient tools, such as Data Table and Goal Seek. It is also useful for a variety of other subjects.

Subjects

ESD.70 | ESD.70 | 1.145 | 1.145 | excel | excel | spreadsheet | spreadsheet | modeling | modeling | dynamic modeling | dynamic modeling | analysis | analysis | data table | data table | goal seek | goal seek | sensitivity analysis | sensitivity analysis | simulation | simulation | random number generator | random number generator | counting | counting | modeling uncertainties | modeling uncertainties | random variables | random variables | statistical package | statistical package | flexibility | flexibility | contingency rules | contingency rules | excel solver | excel solver | solver | solver

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ESD.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.892J Space System Architecture and Design (MIT)

Description

Space System Architecture and Design incorporates lectures, readings and discussion on topics in the architecting of space systems. The class reviews existing space system architectures and the classical methods of designing them. Sessions focus on multi-attribute utility theory as a new design paradigm for space systems, when combined with integrated concurrent engineering and efficient searches of large architectural tradespaces. Designing for flexibility and uncertainty is considered, as are policy and product development issues.

Subjects

space system | space system architecture | space architecting | uncertainties | space policy | robustness | flexibility | optimality | tradespace analysis | quality function deployment | multi-attribute utility theory | n-squared | design structure matrix | multi-attribution tradespace exploration | MATE | MATE-CON | satellite | classes of space system | XTOS | spacetug | GINA | pareto fronts | engineering design process | optimization methods | genetic algorithms | simulated annealing | MMDOSA | distributed space systems design optimization | clarity test | taxonomy of uncertainty | treatment of uncertainty | irreducible uncertainty | portfolio theory | portfolio applications | taxonomy of flexibility | on-orbit servicing | US national space policy | space policy heuristics | policy architectures | 16.892 | ESD.353

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.S71 Increasing Your Physical Intelligence, Enhancing Your Social Smarts (MIT)

Description

The purpose of this class is to offer students a new perspective on the importance of our bodily experience to our cognitive and social lives. The curriculum is designed to foster a working appreciation for how better bodily awareness can positively affect how we feel in our bodies, carry and present ourselves for improved social sensitivity and more successful social interactions. 

Subjects

physical intelligence | exercise | social interactions | training | balance | strength | flexibility | mindfulness | mind and body | cognitive development | self awareness

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.008 Design and Manufacturing II (MIT)

Description

This course introduces you to modern manufacturing with four areas of emphasis: manufacturing processes, equipment/control, systems, and design for manufacturing. The course exposes you to integration of engineering and management disciplines for determining manufacturing rate, cost, quality and flexibility. Topics include process physics, equipment design and automation/control, quality, design for manufacturing, industrial management, and systems design and operation. Labs are integral parts of the course, and expose you to various manufacturing disciplines and practices.

Subjects

modern manufacturing | manufacturing processes | equipment/control | systems | design for manufacturing | integration of engineering and management disciplines | manufacturing rate | cost | quality | flexibility | process physics | equipment design | automation/control | industrial management | systems design and operation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.70J Engineering Economy Module (MIT)

Description

This intensive micro-subject provides the necessary skills in Microsoft® Excel spreadsheet modeling for ESD.71 Engineering Systems Analysis for Design. Its purpose is to bring entering students up to speed on some of the advanced techniques that we routinely use in analysis. It is motivated by our experience that many students only have an introductory knowledge of Excel, and thus waste a lot of time thrashing about unproductively. Many people think they know Excel, but overlook many efficient tools, such as Data Table and Goal Seek. It is also useful for a variety of other subjects.

Subjects

ESD.70 | 1.145 | excel | spreadsheet | modeling | dynamic modeling | analysis | data table | goal seek | sensitivity analysis | simulation | random number generator | counting | modeling uncertainties | random variables | statistical package | flexibility | contingency rules | excel solver | solver

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.008 Design and Manufacturing II (MIT)

Description

Integration of design, engineering, and management disciplines and practices for analysis and design of manufacturing enterprises. Emphasis is on the physics and stochastic nature of manufacturing processes and systems, and their effects on quality, rate, cost, and flexibility. Topics include process physics and control, design for manufacturing, and manufacturing systems. Group project requires design and fabrication of parts using mass-production and assembly methods to produce a product in quantity.

Subjects

manufacturing enterprises | physics | stochastic nature of manufacturing processes | quality | rate | cost | flexibility | process physics | process control

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.008 Design and Manufacturing II (MIT)

Description

This course introduces you to modern manufacturing with four areas of emphasis: manufacturing processes, equipment/control, systems, and design for manufacturing. The course exposes you to integration of engineering and management disciplines for determining manufacturing rate, cost, quality and flexibility. Topics include process physics, equipment design and automation/control, quality, design for manufacturing, industrial management, and systems design and operation. Labs are integral parts of the course, and expose you to various manufacturing disciplines and practices.

Subjects

modern manufacturing | manufacturing processes | equipment/control | systems | design for manufacturing | integration of engineering and management disciplines | manufacturing rate | cost | quality | flexibility | process physics | equipment design | automation/control | industrial management | systems design and operation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.008 Design and Manufacturing II (MIT)

Description

Integration of design, engineering, and management disciplines and practices for analysis and design of manufacturing enterprises. Emphasis is on the physics and stochastic nature of manufacturing processes and systems, and their effects on quality, rate, cost, and flexibility. Topics include process physics and control, design for manufacturing, and manufacturing systems. Group project requires design and fabrication of parts using mass-production and assembly methods to produce a product in quantity.

Subjects

manufacturing enterprises | physics | stochastic nature of manufacturing processes | quality | rate | cost | flexibility | process physics | process control

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.70J Engineering Economy Module (MIT)

Description

This intensive micro-subject provides the necessary skills in Microsoft® Excel spreadsheet modeling for ESD.71 – Engineering Systems Analysis for Design. Its purpose is to bring entering students up to speed on some of the advanced techniques that we routinely use in analysis. It is motivated by our experience that many students only have an introductory knowledge of Excel, and thus waste a lot of time thrashing about unproductively. Many people think they know Excel, but overlook many efficient tools – such as Data Table and Goal Seek. It is also useful for a variety of other subjects.NoteThis MIT OpenCourseWare site is based on the materials from Professor de Neufville's ESD.70J Web site.

Subjects

excel | spreadsheet | modeling | dynamic modeling | analysis | data table | goal seek | sensitivity analysis | simulation | random number generator | counting | modeling uncertainties | random variables | statistical package | flexibility | contingency rules | excel solver | solver

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lecture capture - benefits to students

Description

A summary of lecture capture's benefits to students.

Subjects

lecture capture | recording lectures | media | benefits | students | accessibility | language | flexibility | distance | revision | eltac | coventry university | documentation | P000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata