Searching for flywheel : 5 results found | RSS Feed for this search

2.04A Systems and Controls (MIT) 2.04A Systems and Controls (MIT)

Description

This course provides an introduction to linear systems, transfer functions, and Laplace transforms. It covers stability and feedback, and provides basic design tools for specifications of transient response. It also briefly covers frequency-domain techniques. This course provides an introduction to linear systems, transfer functions, and Laplace transforms. It covers stability and feedback, and provides basic design tools for specifications of transient response. It also briefly covers frequency-domain techniques.Subjects

systems | systems | controls | controls | ordinary differential equations | ordinary differential equations | ODEs | ODEs | differential equations | differential equations | Laplace | Laplace | transfer function | transfer function | flywheel | flywheel | circuits | circuits | impedance | impedance | feedback | feedback | root locus | root locus | linear systems | linear systems | Laplace transforms | Laplace transforms | stability | stability | frequency-domain | frequency-domain | skyscaper | skyscaperLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.01 Physics I: Classical Mechanics (MIT)

Description

8.01 is a first-semester freshman physics class in Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory. In addition to the basic concepts of Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory, a variety of interesting topics are covered in this course: Binary Stars, Neutron Stars, Black Holes, Resonance Phenomena, Musical Instruments, Stellar Collapse, Supernovae, Astronomical observations from very high flying balloons (lecture 35), and you will be allowed a peek into the intriguing Quantum World. Also by Walter Lewin Courses: Electricity and Magnetism (8.02) - with a complete set of 36 video lectures from the Spring of 2002 Vibrations and Waves (8.03) - with a complete set of 23 video lectures from the Fall of 2004 Talks: For The Love Of Physics - ProfesSubjects

units of measurement | powers of ten | dimensional analysis | measurement uncertainty | scaling arguments | velocity | speed | acceleration | acceleration of gravity | vectors | motion | vector product | scalar product | projectiles | projectile trajectory | circular motion | centripetal motion | artifical gravity | force | Newton's Three Laws | eight | weightlessness | tension | friction | frictionless forces | static friction | dot products | cross products | kinematics | springs | pendulum | mechanical energy | kinetic energy | universal gravitation | resistive force | drag force | air drag | viscous terminal velocity | potential energy | heat; energy consumption | heat | energy consumption | collisions | center of mass | momentum | Newton's Cradle | impulse and impact | rocket thrust | rocket velocity | flywheels | inertia | torque | spinning rod | elliptical orbits | Kepler's Laws | Doppler shift | stellar dynamics | sound waves | electromagnets | binary star | black holes | rope tension | elasticity | speed of sound | pressure in fluid | Pascal's Principle | hydrostatic pressure | barometric pressure | submarines | buoyant force | Bernoulli's Equations | Archimede's Principle | floating | baloons | resonance | wind instruments | thermal expansion | shrink fitting | particles and waves | diffractionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.01 Physics I: Classical Mechanics (MIT)

Description

8.01 is a first-semester freshman physics class in Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory. In addition to the basic concepts of Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory, a variety of interesting topics are covered in this course: Binary Stars, Neutron Stars, Black Holes, Resonance Phenomena, Musical Instruments, Stellar Collapse, Supernovae, Astronomical observations from very high flying balloons (lecture 35), and you will be allowed a peek into the intriguing Quantum World. Also by Walter Lewin Courses: Electricity and Magnetism (8.02) - with a complete set of 36 video lectures from the Spring of 2002 Vibrations and Waves (8.03) - with a complete set of 23 video lectures from the Fall of 2004 Talks: For The Love Of Physics - ProfesSubjects

units of measurement | powers of ten | dimensional analysis | measurement uncertainty | scaling arguments | velocity | speed | acceleration | acceleration of gravity | vectors | motion | vector product | scalar product | projectiles | projectile trajectory | circular motion | centripetal motion | artifical gravity | force | Newton's Three Laws | eight | weightlessness | tension | friction | frictionless forces | static friction | dot products | cross products | kinematics | springs | pendulum | mechanical energy | kinetic energy | universal gravitation | resistive force | drag force | air drag | viscous terminal velocity | potential energy | heat; energy consumption | heat | energy consumption | collisions | center of mass | momentum | Newton's Cradle | impulse and impact | rocket thrust | rocket velocity | flywheels | inertia | torque | spinning rod | elliptical orbits | Kepler's Laws | Doppler shift | stellar dynamics | sound waves | electromagnets | binary star | black holes | rope tension | elasticity | speed of sound | pressure in fluid | Pascal's Principle | hydrostatic pressure | barometric pressure | submarines | buoyant force | Bernoulli's Equations | Archimede's Principle | floating | baloons | resonance | wind instruments | thermal expansion | shrink fitting | particles and waves | diffractionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allkoreancourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataFlywheels : an alternative energy storage method : presentation transcript

Description

This open educational resource was released through the Higher Education Academy Engineering Subject Centre Open Engineering Resources Pilot project. The project was funded by HEFCE and the JISC/HE Academy UKOER programme.Subjects

ukoer | engscoer | cc-by | leicester college | leicester college tech | leicestercollegeoer | engineering department | education | higher education | learning | kinetic | battery | energy | rotation | nqf l4 | mechanical principals | energy storage | flywheels | edexcel hn unit | kinetic battery | Engineering | H000License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.04A Systems and Controls (MIT)

Description

This course provides an introduction to linear systems, transfer functions, and Laplace transforms. It covers stability and feedback, and provides basic design tools for specifications of transient response. It also briefly covers frequency-domain techniques.Subjects

systems | controls | ordinary differential equations | ODEs | differential equations | Laplace | transfer function | flywheel | circuits | impedance | feedback | root locus | linear systems | Laplace transforms | stability | frequency-domain | skyscaperLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata