Searching for forms : 573 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6.003 Signals and Systems (MIT) 6.003 Signals and Systems (MIT)

Description

This course covers fundamentals of signal and system analysis, with applications drawn from filtering, audio and image processing, communications, and automatic control. Topics include convolution, Fourier series and transforms, sampling and discrete-time processing of continuous-time signals, modulation, Laplace and Z-transforms, and feedback systems. This course covers fundamentals of signal and system analysis, with applications drawn from filtering, audio and image processing, communications, and automatic control. Topics include convolution, Fourier series and transforms, sampling and discrete-time processing of continuous-time signals, modulation, Laplace and Z-transforms, and feedback systems.Subjects

signal and system analysis | signal and system analysis | filtering | filtering | audio | audio | audio processing | audio processing | image processing | image processing | communications | communications | automatic control | automatic control | convolution | convolution | Fourier series | Fourier series | fourier transforms | fourier transforms | sampling | sampling | discrete-time processing | discrete-time processing | modulation | modulation | Laplace transforms | Laplace transforms | Z-transforms | Z-transforms | feedback systems | feedback systemsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course deals with modeling multi-domain engineering systems at a level of detail suitable for design and control system implementation. Topics covered include network representation, state-space models; multi-port energy storage and dissipation, Legendre transforms, nonlinear mechanics, transformation theory, Lagrangian and Hamiltonian forms and control-relevant properties. Application examples may include electro-mechanical transducers, mechanisms, electronics, fluid and thermal systems, compressible flow, chemical processes, diffusion, and wave transmission. This course deals with modeling multi-domain engineering systems at a level of detail suitable for design and control system implementation. Topics covered include network representation, state-space models; multi-port energy storage and dissipation, Legendre transforms, nonlinear mechanics, transformation theory, Lagrangian and Hamiltonian forms and control-relevant properties. Application examples may include electro-mechanical transducers, mechanisms, electronics, fluid and thermal systems, compressible flow, chemical processes, diffusion, and wave transmission.Subjects

Modeling multi-domain engineering systems | Modeling multi-domain engineering systems | design and control system implementation | design and control system implementation | Network representation | Network representation | state-space models | state-space models | dissipation | dissipation | Legendre transforms | Legendre transforms | Nonlinear mechanics | Nonlinear mechanics | transformation theory | transformation theory | Hamiltonian forms | Hamiltonian forms | Control-relevant properties | Control-relevant properties | electro-mechanical transducers | electro-mechanical transducers | mechanisms | mechanisms | electronics | electronics | thermal systems | thermal systems | compressible flow | compressible flow | chemical processes | chemical processes | diffusion | diffusion | wave transmission | wave transmissionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.04 Complex Variables with Applications (MIT) 18.04 Complex Variables with Applications (MIT)

Description

This course explored topics such as complex algebra and functions, analyticity, contour integration, Cauchy's theorem, singularities, Taylor and Laurent series, residues, evaluation of integrals, multivalued functions, potential theory in two dimensions, Fourier analysis and Laplace transforms. This course explored topics such as complex algebra and functions, analyticity, contour integration, Cauchy's theorem, singularities, Taylor and Laurent series, residues, evaluation of integrals, multivalued functions, potential theory in two dimensions, Fourier analysis and Laplace transforms.Subjects

Complex algebra and functions | Complex algebra and functions | analyticity | analyticity | contour integration | Cauchy's theorem | contour integration | Cauchy's theorem | singularities | Taylor and Laurent series | singularities | Taylor and Laurent series | residues | evaluation of integrals | residues | evaluation of integrals | multivalued functions | potential theory in two dimensions | multivalued functions | potential theory in two dimensions | Fourier analysis and Laplace transforms. | Fourier analysis and Laplace transforms. | Fourier analysis and Laplace transforms | Fourier analysis and Laplace transformsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.311 Principles of Applied Mathematics (MIT) 18.311 Principles of Applied Mathematics (MIT)

Description

18.311 Principles of Continuum Applied Mathematics covers fundamental concepts in continuous applied mathematics, including applications from traffic flow, fluids, elasticity, granular flows, etc. The class also covers continuum limit; conservation laws, quasi-equilibrium; kinematic waves; characteristics, simple waves, shocks; diffusion (linear and nonlinear); numerical solution of wave equations; finite differences, consistency, stability; discrete and fast Fourier transforms; spectral methods; transforms and series (Fourier, Laplace). Additional topics may include sonic booms, Mach cone, caustics, lattices, dispersion, and group velocity. 18.311 Principles of Continuum Applied Mathematics covers fundamental concepts in continuous applied mathematics, including applications from traffic flow, fluids, elasticity, granular flows, etc. The class also covers continuum limit; conservation laws, quasi-equilibrium; kinematic waves; characteristics, simple waves, shocks; diffusion (linear and nonlinear); numerical solution of wave equations; finite differences, consistency, stability; discrete and fast Fourier transforms; spectral methods; transforms and series (Fourier, Laplace). Additional topics may include sonic booms, Mach cone, caustics, lattices, dispersion, and group velocity.Subjects

partial differential equation | partial differential equation | hyperbolic equations | hyperbolic equations | dimensional analysis | dimensional analysis | perturbation methods | perturbation methods | hyperbolic systems | hyperbolic systems | diffusion and reaction processes | diffusion and reaction processes | continuum models | continuum models | equilibrium models | equilibrium models | continuous applied mathematics | continuous applied mathematics | traffic flow | traffic flow | fluids | fluids | elasticity | elasticity | granular flows | granular flows | continuum limit | continuum limit | conservation laws | conservation laws | quasi-equilibrium | quasi-equilibrium | kinematic waves | kinematic waves | characteristics | characteristics | simple waves | simple waves | shocks | shocks | diffusion (linear and nonlinear) | diffusion (linear and nonlinear) | numerical solution of wave equations | numerical solution of wave equations | finite differences | finite differences | consistency | consistency | stability | stability | discrete and fast Fourier transforms | discrete and fast Fourier transforms | spectral methods | spectral methods | transforms and series (Fourier | Laplace) | transforms and series (Fourier | Laplace) | sonic booms | sonic booms | Mach cone | Mach cone | caustics | caustics | lattices | lattices | dispersion | dispersion | group velocity | group velocityLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.05 Quantum Physics II (MIT) 8.05 Quantum Physics II (MIT)

Description

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum. Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.Subjects

General formalism of quantum mechanics: states | General formalism of quantum mechanics: states | operators | operators | Dirac notation | Dirac notation | representations | representations | measurement theory | measurement theory | Harmonic oscillator: operator algebra | Harmonic oscillator: operator algebra | states | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | bound and scattering states | qualitative analysis of wavefunctions | qualitative analysis of wavefunctions | Angular momentum: operators | Angular momentum: operators | commutator algebra | commutator algebra | eigenvalues and eigenstates | eigenvalues and eigenstates | spherical harmonics | spherical harmonics | Spin: Stern-Gerlach devices and measurements | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | nuclear magnetic resonance | spin and statistics | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | spin systems | allotropic forms of hydrogen | allotropic forms of hydrogen | Angular momentum | Angular momentum | Harmonic oscillator | Harmonic oscillator | operator algebra | operator algebra | Spin | Spin | Stern-Gerlach devices and measurements | Stern-Gerlach devices and measurements | central potentials and the radial equation | central potentials and the radial equation | Clebsch-Gordan series and coefficients | Clebsch-Gordan series and coefficients | quantum physics | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogen | and allotropic forms of hydrogenLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Business organizations and markets use a bewildering variety of structures to coordinate the productive activities of their stakeholders. Dramatic changes in information technology and the nature of economic competition are forcing firms to come up with new ways of organizing work. This course uses economic theory to investigate the roles of information and technology in the existing diversity of organizations and markets and in enabling the creating of new organizational forms. Business organizations and markets use a bewildering variety of structures to coordinate the productive activities of their stakeholders. Dramatic changes in information technology and the nature of economic competition are forcing firms to come up with new ways of organizing work. This course uses economic theory to investigate the roles of information and technology in the existing diversity of organizations and markets and in enabling the creating of new organizational forms.Subjects

business organizations | business organizations | economic theory | economic theory | stakeholders | stakeholders | information technology | information technology | nature of economic competition | nature of economic competition | new ways of organizing work | new ways of organizing work | roles of information and technology organizational forms | roles of information and technology organizational forms | new organizational forms | new organizational forms | organizations | organizationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataReadme file for Rapid Application Development

Description

This readme file contains details of links to all the Rapid Application Development module's material held on Jorum and information about the module as well.Subjects

ukoer | access 2003 practical | access 2007 lecture | access 2007 practical | access 2007 task guide | access 2007 | access lecture | access practical | access reading material | action queries lecture | action queries practical | action queries task guide | action queries | action query lecture | action query practical | action query task guide | action query | asp.net lecture | asp.net practical | asp.net reading material | asp.net task guide | asp.net | class modules reading material | classes lecture | classes practical | classes reading material | classes task guide | classes | client server lecture | client server reading material | client server task guide | client server | data access practical | form data lecture | form data practical | form data task guide | form data | forms lecture | forms practical | forms task guide | forms | menus and toolbars lecture | menus and toolbars practical | menus and toolbars task guide | menus and toolbars | menus lecture | menus practical | menus task guide | menus | multitier architecture lecture | multitier architecture reading material | multitier architecture task guide | multitier architecture | multitier architectures lecture | multitier architectures reading material | multitier architectures task guide | multitier architectures | object concepts lecture | object concepts practical | object concepts reading material | object concepts task guide | object concepts | objects practical | objects task guide | queries lecture | rad lecture | rad methodologies reading material | rad methodology lecture | rad methodology practical | rad methodology reading material | rad methodology task guide | rad methodology | rad practical | rad reading material | rad task guide | rad | rapid application development lecture | rapid application development methodologies lecture | rapid application development methodologies practical | rapid application development methodologies reading material | rapid application development methodologies task guide | rapid application development methodologies | rapid application development methodology lecture | rapid application development methodology practical | rapid application development methodology reading material | rapid application development methodology task guide | rapid application development methodology | rapid application development practical | rapid application development reading material | rapid application development task guide | rapid application development | rapid application practical | rapid application task guide | recordset lecture | recordset practical | recordset task guide | recordset | recordsetclone lecture | recordsetclone practical | recordsetclone task guide | recordsetclone | recordsets lecture | recordsets practical | recordsets task guide | recordsets | recordsource practical | reports lecture | reports practical | reports task guide | reports | sql lecture | toolbars lecture | toolbars practical | toolbars task guide | toolbars | unbound recordsets practical | unbound recordsets task guide | user controls lecture | user controls practical | user controls reading material | user controls task guide | user controls | vba practical | vba lecture | vba reading material | vba task guide | vba | visual basic for applications lecture | visual basic for applications practical | visual basic for applications reading material | visual basic for applications task guide | visual basic for applications | visual basic lecture | visual basic practical | visual basic reading material | visual basic task guide | visual basic | web delivery task guide | .net lecture | .net practical | .net reading material | .net task guide | net | 4gl lecture | 4gl practical | 4gl task guide | 4gl | asp lecture | asp practical | asp reading material | asp task guide | asp | g400 lecture | g400 practical | g400 reading material | g400 task guide | g400 | rad methodologies lecture | rad methodologies practical | rad methodologies task guide | rad methodologies | practical report | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Subjects

statelibraryofqueensland | statelibraryofqueensland | slq | slq | queensland | queensland | school | school | classroom | classroom | desks | desks | schooluniforms | schooluniforms | uniforms | uniforms | exams | examsLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=32605636@N06&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course models multi-domain engineering systems at a level of detail suitable for design and control system implementation. Topics include network representation, state-space models; multi-port energy storage and dissipation, Legendre transforms; nonlinear mechanics, transformation theory, Lagrangian and Hamiltonian forms; and control-relevant properties. Application examples may include electro-mechanical transducers, mechanisms, electronics, fluid and thermal systems, compressible flow, chemical processes, diffusion, and wave transmission. This course models multi-domain engineering systems at a level of detail suitable for design and control system implementation. Topics include network representation, state-space models; multi-port energy storage and dissipation, Legendre transforms; nonlinear mechanics, transformation theory, Lagrangian and Hamiltonian forms; and control-relevant properties. Application examples may include electro-mechanical transducers, mechanisms, electronics, fluid and thermal systems, compressible flow, chemical processes, diffusion, and wave transmission.Subjects

Modeling multi-domain engineering systems | Modeling multi-domain engineering systems | design and control system implementation | design and control system implementation | Network representation | Network representation | state-space models | state-space models | dissipation | dissipation | Legendre transforms | Legendre transforms | Nonlinear mechanics | Nonlinear mechanics | transformation theory | transformation theory | Hamiltonian forms | Hamiltonian forms | Control-relevant properties | Control-relevant properties | electro-mechanical transducers | electro-mechanical transducers | mechanisms | mechanisms | electronics | electronics | thermal systems | thermal systems | compressible flow | compressible flow | chemical processes | chemical processes | diffusion | diffusion | wave transmission | wave transmissionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.003 Signals and Systems (MIT)

Description

This course covers fundamentals of signal and system analysis, with applications drawn from filtering, audio and image processing, communications, and automatic control. Topics include convolution, Fourier series and transforms, sampling and discrete-time processing of continuous-time signals, modulation, Laplace and Z-transforms, and feedback systems.Subjects

signal and system analysis | filtering | audio | audio processing | image processing | communications | automatic control | convolution | Fourier series | fourier transforms | sampling | discrete-time processing | modulation | Laplace transforms | Z-transforms | feedback systemsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataRapid Application Development - Review of Forms

Description

This task guide forms part of the "Review of Forms" topic in the Rapid Application Development module.Subjects

ukoer | forms | forms practical | rad | rapid application development | forms task guide | rad task guide | rapid application development task guide | g400 | g400 task guide | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures. Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and thei The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures. Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and theiSubjects

floating bodies | floating bodies | offshore platforms | offshore platforms | ships | ships | fluid dynamics | fluid dynamics | surface energy | surface energyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataRapid Application Development - Review of Forms

Description

This practical forms part of the "Review of Forms" topic in the Rapid Application Development module.Subjects

ukoer | forms | forms practical | rad | rapid application development | rad practical | rapid application development practical | g400 | g400 practical | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataRapid Application Development - Review of Forms

Description

This practical forms part of the "Review of Forms" topic in the Rapid Application Development module.Subjects

ukoer | forms practical | forms | rad | rapid application development | rad practical | rapid application development practical | g400 | g400 practical | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This class offers students an opportunity to experiment with various forms and practices of cellphone communication and, most importantly, to propose and develop a semester-long project using advanced A780 cellphones donated by Motorola along with access to J2ME™ source code for programming cellphone applications. Class size is limited. Students in small collaborative groups will propose, implement and report on a semester-long project. This class offers students an opportunity to experiment with various forms and practices of cellphone communication and, most importantly, to propose and develop a semester-long project using advanced A780 cellphones donated by Motorola along with access to J2ME™ source code for programming cellphone applications. Class size is limited. Students in small collaborative groups will propose, implement and report on a semester-long project.Subjects

communication | communication | contemporary engineering and science professional | contemporary engineering and science professional | analyzing how composition and publication contribute to work management and knowledge production | analyzing how composition and publication contribute to work management and knowledge production | writing specific kinds of documents in a clear style | writing specific kinds of documents in a clear style | communication as organizational process | communication as organizational process | electronic modes such as e-mail and the Internet | electronic modes such as e-mail and the Internet | the informational and social roles of specific document forms | the informational and social roles of specific document forms | writing as collaboration | writing as collaboration | the writing process | the writing process | the elements of style | the elements of style | methods of oral presentation | and communication ethics | methods of oral presentation | and communication ethics | case studies | case studies | writing assignments | writing assignments | oral presentation | oral presentation | methods of oral presentation | and communication ethics | methods of oral presentation | and communication ethicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.110 Sedimentary Geology (MIT) 12.110 Sedimentary Geology (MIT)

Description

This course covers sediments in the rock cycle, production of sediments at the Earth's surface, physics and chemistry of sedimentary materials, and scale and geometry of near-surface sedimentary bodies, including aquifers. We will also explore topics like sediment transport and deposition in modern sedimentary environments, burial and lithification, survey of major sedimentary rock types, stratigraphic relationships of sedimentary basins, and evolution of sedimentary processes through geologic time. This course covers sediments in the rock cycle, production of sediments at the Earth's surface, physics and chemistry of sedimentary materials, and scale and geometry of near-surface sedimentary bodies, including aquifers. We will also explore topics like sediment transport and deposition in modern sedimentary environments, burial and lithification, survey of major sedimentary rock types, stratigraphic relationships of sedimentary basins, and evolution of sedimentary processes through geologic time.Subjects

Sediment Transport | Sediment Transport | Sediment Production | Sediment Production | Bedforms | Bedforms | Alluvial Fans | Alluvial Fans | Alluvial Rivers | Alluvial Rivers | Deltas | Deltas | Eolian Systems | Eolian Systems | Shorelines | Shorelines | Nearshore | Nearshore | Continental Shelf | Continental Shelf | Continental Slope | Continental SlopeLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata4.42J Fundamentals of Energy in Buildings (MIT) 4.42J Fundamentals of Energy in Buildings (MIT)

Description

This subject provides a first course in thermo-sciences for students primarily interested in architecture and building technology. It introduces the fundamentals important to energy, ventilation, air conditioning and comfort in buildings. It includes a detailed treatment of different forms of energy, energy conservation, properties of gases and liquids, air-water vapor mixtures and performance limits for air conditioning and power producing systems. Heat transfer principles are introduced with applications to energy losses from a building envelope. The subject is a prerequisite for more advanced thermo-science subjects in Architecture and Mechanical Engineering. This subject provides a first course in thermo-sciences for students primarily interested in architecture and building technology. It introduces the fundamentals important to energy, ventilation, air conditioning and comfort in buildings. It includes a detailed treatment of different forms of energy, energy conservation, properties of gases and liquids, air-water vapor mixtures and performance limits for air conditioning and power producing systems. Heat transfer principles are introduced with applications to energy losses from a building envelope. The subject is a prerequisite for more advanced thermo-science subjects in Architecture and Mechanical Engineering.Subjects

energy in buildings | energy in buildings | ventilation | ventilation | air conditioning | air conditioning | forms of energy | forms of energy | energy conservation | energy conservation | heat transfer | heat transfer | energy losses from buildings | energy losses from buildingsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.04 Complex Variables with Applications (MIT)

Description

This course explored topics such as complex algebra and functions, analyticity, contour integration, Cauchy's theorem, singularities, Taylor and Laurent series, residues, evaluation of integrals, multivalued functions, potential theory in two dimensions, Fourier analysis and Laplace transforms.Subjects

Complex algebra and functions | analyticity | contour integration | Cauchy's theorem | singularities | Taylor and Laurent series | residues | evaluation of integrals | multivalued functions | potential theory in two dimensions | Fourier analysis and Laplace transforms. | Fourier analysis and Laplace transformsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata15.575 Research Seminar in IT and Organizations: Economic Perspectives (MIT)

Description

Business organizations and markets use a bewildering variety of structures to coordinate the productive activities of their stakeholders. Dramatic changes in information technology and the nature of economic competition are forcing firms to come up with new ways of organizing work. This course uses economic theory to investigate the roles of information and technology in the existing diversity of organizations and markets and in enabling the creating of new organizational forms.Subjects

business organizations | economic theory | stakeholders | information technology | nature of economic competition | new ways of organizing work | roles of information and technology organizational forms | new organizational forms | organizationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata4.42J Fundamentals of Energy in Buildings (MIT) 4.42J Fundamentals of Energy in Buildings (MIT)

Description

This design-based subject provides a first course in energy and thermo-sciences with applications to sustainable energy-efficient architecture and building technology. No previous experience with subject matter is assumed. After taking this subject, students will understand introductory thermodynamics and heat transfer, know the leading order factors in building energy use, and have creatively employed their understanding of energy fundamentals and knowledge of building energy use in innovative building design projects. This year, the focus will be on design projects that will complement the new NSTAR/MIT campus efficiency program. This design-based subject provides a first course in energy and thermo-sciences with applications to sustainable energy-efficient architecture and building technology. No previous experience with subject matter is assumed. After taking this subject, students will understand introductory thermodynamics and heat transfer, know the leading order factors in building energy use, and have creatively employed their understanding of energy fundamentals and knowledge of building energy use in innovative building design projects. This year, the focus will be on design projects that will complement the new NSTAR/MIT campus efficiency program.Subjects

energy in buildings | energy in buildings | ventilation | ventilation | air conditioning | air conditioning | forms of energy | forms of energy | energy conservation | energy conservation | heat transfer | heat transfer | energy losses from buildings | energy losses from buildingsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.06 Linear Algebra (MIT) 18.06 Linear Algebra (MIT)

Description

Basic subject on matrix theory and linear algebra, emphasizing topics useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. Applications to least-squares approximations, stability of differential equations, networks, Fourier transforms, and Markov processes. Uses MATLAB®. Compared with 18.700 [also Linear Algebra], more emphasis on matrix algorithms and many applications. MATLAB® is a trademark of The MathWorks, Inc. Basic subject on matrix theory and linear algebra, emphasizing topics useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. Applications to least-squares approximations, stability of differential equations, networks, Fourier transforms, and Markov processes. Uses MATLAB®. Compared with 18.700 [also Linear Algebra], more emphasis on matrix algorithms and many applications. MATLAB® is a trademark of The MathWorks, Inc.Subjects

Generalized spaces | Generalized spaces | Linear algebra | Linear algebra | Algebra | Universal | Algebra | Universal | Mathematical analysis | Mathematical analysis | Calculus of operations | Calculus of operations | Line geometry | Line geometry | Topology | Topology | matrix theory | matrix theory | systems of equations | systems of equations | vector spaces | vector spaces | systems determinants | systems determinants | eigen values | eigen values | positive definite matrices | positive definite matrices | Markov processes | Markov processes | Fourier transforms | Fourier transforms | differential equations | differential equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataESD.140 Organizational Processes (MIT) ESD.140 Organizational Processes (MIT)

Description

Focuses on the organizations of the future; living in, managing, and leading such organizations, as well as the challenges of today's organizations. Special attention to skills and competencies such as leadership, communications, teamwork, strategic partnership, diagnosis, and process improvement. Examines structures, rewards, career paths, and cross-cultural dynamics, with special attention to the interrelationships among organizations, technology, and policy in a wide range of industry contexts. Focuses on the organizations of the future; living in, managing, and leading such organizations, as well as the challenges of today's organizations. Special attention to skills and competencies such as leadership, communications, teamwork, strategic partnership, diagnosis, and process improvement. Examines structures, rewards, career paths, and cross-cultural dynamics, with special attention to the interrelationships among organizations, technology, and policy in a wide range of industry contexts.Subjects

organizational processes | organizational processes | organizational forms | organizational forms | leadership | leadership | communications | communications | teamwork | teamwork | strategic partnership | strategic partnership | process improvement | process improvement | technology policy | technology policyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.701 Algebra I (MIT) 18.701 Algebra I (MIT)

Description

This undergraduate level Algebra I course covers groups, vector spaces, linear transformations, symmetry groups, bilinear forms, and linear groups. This undergraduate level Algebra I course covers groups, vector spaces, linear transformations, symmetry groups, bilinear forms, and linear groups.Subjects

Group Theory | Group Theory | Linear Algebra | and Geometry | Linear Algebra | and Geometry | groups | groups | vector spaces | vector spaces | linear transformations | linear transformations | symmetry groups | symmetry groups | bilinear | bilinear | bilinear forms | and linear groups | bilinear forms | and linear groupsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.311 Principles of Applied Mathematics (MIT)

Description

18.311 Principles of Continuum Applied Mathematics covers fundamental concepts in continuous applied mathematics, including applications from traffic flow, fluids, elasticity, granular flows, etc. The class also covers continuum limit; conservation laws, quasi-equilibrium; kinematic waves; characteristics, simple waves, shocks; diffusion (linear and nonlinear); numerical solution of wave equations; finite differences, consistency, stability; discrete and fast Fourier transforms; spectral methods; transforms and series (Fourier, Laplace). Additional topics may include sonic booms, Mach cone, caustics, lattices, dispersion, and group velocity.Subjects

partial differential equation | hyperbolic equations | dimensional analysis | perturbation methods | hyperbolic systems | diffusion and reaction processes | continuum models | equilibrium models | continuous applied mathematics | traffic flow | fluids | elasticity | granular flows | continuum limit | conservation laws | quasi-equilibrium | kinematic waves | characteristics | simple waves | shocks | diffusion (linear and nonlinear) | numerical solution of wave equations | finite differences | consistency | stability | discrete and fast Fourier transforms | spectral methods | transforms and series (Fourier | Laplace) | sonic booms | Mach cone | caustics | lattices | dispersion | group velocityLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.31 Feedback Control Systems (MIT) 16.31 Feedback Control Systems (MIT)

Description

The goal of this subject is to teach the fundamentals of control design and analysis using state-space methods. This includes both the practical and theoretical aspects of the topic. By the end of the course, students should be able to design controllers using state-space methods and evaluate whether these controllers are "robust," that is, if they are likely to work well in practice. The goal of this subject is to teach the fundamentals of control design and analysis using state-space methods. This includes both the practical and theoretical aspects of the topic. By the end of the course, students should be able to design controllers using state-space methods and evaluate whether these controllers are "robust," that is, if they are likely to work well in practice.Subjects

feedback control | feedback control | feedback control system | feedback control system | state-space | state-space | controllability | controllability | observability | observability | transfer functions | transfer functions | canonical forms | canonical forms | controllers | controllers | pole-placement | pole-placement | optimal control | optimal control | Kalman filter | Kalman filterLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata