Searching for frame : 867 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

15.904 Strategic Management II (MIT) 15.904 Strategic Management II (MIT)

Description

This half-semester course is intended to be an extension of course 15.902, Strategic Management I, with the purpose of allowing the students to experience an in-depth application of the concepts and frameworks of strategic management. Throughout the course, Prof. Hax will discuss the appropriate methodologies, concepts, and tools pertinent to strategic analyses and will illustrate their use by discussing many applications in real-life settings, drawn from his own personal experiences. This half-semester course is intended to be an extension of course 15.902, Strategic Management I, with the purpose of allowing the students to experience an in-depth application of the concepts and frameworks of strategic management. Throughout the course, Prof. Hax will discuss the appropriate methodologies, concepts, and tools pertinent to strategic analyses and will illustrate their use by discussing many applications in real-life settings, drawn from his own personal experiences.

Subjects

Delta Project | Delta Project | personal experiences | personal experiences | applications in real-life settings | applications in real-life settings | strategic analyses | strategic analyses | concepts and frameworks of strategic management | concepts and frameworks of strategic management | applications | applications | real-life settings | real-life settings | concepts | concepts | frameworks | frameworks | strategic managment | strategic managment | business | business | corporate | corporate | strategy | strategy | administration | administration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.032 Mechanical Behavior of Materials (MIT) 3.032 Mechanical Behavior of Materials (MIT)

Description

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. Integrated laboratories provide the opportunity to explore these concepts through hands-on experiments including instrumentation of pressure vessels, visualization of atomistic deformation in bubble rafts, nanoindentation, and uniaxial mechanical testing, as well as writing assignments to communicate th Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. Integrated laboratories provide the opportunity to explore these concepts through hands-on experiments including instrumentation of pressure vessels, visualization of atomistic deformation in bubble rafts, nanoindentation, and uniaxial mechanical testing, as well as writing assignments to communicate th

Subjects

Basic concepts of solid mechanics and mechanical behavior of materials | Basic concepts of solid mechanics and mechanical behavior of materials | stress-strain relationships | stress-strain relationships | stress transformation | stress transformation | elasticity | elasticity | plasticity and fracture. Case studies include materials selection for bicycle frames | plasticity and fracture. Case studies include materials selection for bicycle frames | stress shielding in biomedical implants; residual stresses in thin films; and ancient materials. Lab experiments and demonstrations give hands-on experience of the physical concepts at a variety of length scales. Use of facilities for measuring mechanical properties including standard mechanical tests | stress shielding in biomedical implants; residual stresses in thin films; and ancient materials. Lab experiments and demonstrations give hands-on experience of the physical concepts at a variety of length scales. Use of facilities for measuring mechanical properties including standard mechanical tests | bubble raft models | bubble raft models | atomic force microscopy and nanoindentation. | atomic force microscopy and nanoindentation. | plasticity and fracture | plasticity and fracture | Case studies | Case studies | materials selection | materials selection | bicycle frames | bicycle frames | stress shielding in biomedical implants | stress shielding in biomedical implants | residual stresses in thin films | residual stresses in thin films | ancient materials | ancient materials | standard mechanical tests | standard mechanical tests | solid mechanics | solid mechanics | mechanical behavior of materials | mechanical behavior of materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.920 A Hands-On Introduction to Nuclear Magnetic Resonance (MIT) 22.920 A Hands-On Introduction to Nuclear Magnetic Resonance (MIT)

Description

Hands-on introduction to NMR presenting background in classical theory and instrumentation. Each lecture is followed by lab experiments to demonstrate ideas presented during the lecture and to familiarize students with state-of-the-art NMR instrumentation. Experiments cover topics ranging from spin dynamics to spectroscopy, and include imaging. Hands-on introduction to NMR presenting background in classical theory and instrumentation. Each lecture is followed by lab experiments to demonstrate ideas presented during the lecture and to familiarize students with state-of-the-art NMR instrumentation. Experiments cover topics ranging from spin dynamics to spectroscopy, and include imaging.

Subjects

nuclear spin | nuclear spin | magnetic resonance | magnetic resonance | rotating | rotating | otating frame | otating frame | rotating frame | rotating frame | RF pulses | RF pulses | Bloch's equations | Bloch's equations | magnetic field gradients | magnetic field gradients | k-space | k-space | diffusion | diffusion | spin echoes | spin echoes | NMR imaging in 2D | NMR imaging in 2D | slice selection | slice selection | flow studies | flow studies | NMR spectroscopy | NMR spectroscopy | chemical shifts | chemical shifts | spin-spin couplings | spin-spin couplings | Two dimensional NMR methods | Two dimensional NMR methods | COSY experiment | COSY experiment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.04J Frameworks and Models in Engineering Systems / Engineering System Design (MIT) ESD.04J Frameworks and Models in Engineering Systems / Engineering System Design (MIT)

Description

This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks. This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks.

Subjects

ESD.04 | ESD.04 | 1.041 | 1.041 | ESD.01 | ESD.01 | frameworks and models in engineering systems | frameworks and models in engineering systems | quantitative models | quantitative models | qualitative frameworks | qualitative frameworks | complex engineering systems | complex engineering systems | analysis and design | analysis and design | emergent behavior | emergent behavior | stochasticity | stochasticity | non-linearities | non-linearities | architectural system configuration | architectural system configuration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

28 March 1920 28 March 1920

Description

Subjects

2005 | 2005 | roof | roof | sky | sky | cloud | cloud | blur | blur | building | building | brick | brick | london | london | industry | industry | window | window | glass | glass | metal | metal | wall | wall | work | work | fence | fence | french | french | tin | tin | site | site | construction | construction | floor | floor | box | box | timber | timber | mark | mark | steel | steel | name | name | debris | debris | bricks | bricks | grain | grain | siemens | siemens | ground | ground | rollsroyce | rollsroyce | rope | rope | science | science | structure | structure | pole | pole | beam | beam | company | company | soil | soil | doorway | doorway | pile | pile | frame | frame | 1989 | 1989 | 1968 | 1968 | unusual | unusual | product | product | hebburn | hebburn | development | development | firstworldwar | firstworldwar | engineer | engineer | 1886 | 1886 | fascinating | fascinating | digitalimage | digitalimage | expansion | expansion | powerstations | powerstations | tynewear | tynewear | founder | founder | 1901 | 1901 | industrialheritage | industrialheritage | blackframe | blackframe | mergers | mergers | blackandwhitephotograph | blackandwhitephotograph | worlife | worlife | reyrolle | reyrolle | caparsons | caparsons | constructionatareyrollecoltd | constructionatareyrollecoltd | switchgearshop | switchgearshop | alphonsereyrolle | alphonsereyrolle | 18641919 | 18641919 | henryclothier | henryclothier | 28march1920 | 28march1920

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Work is underway on the side frames of Northbank

Description

Work on the side frames of the ?Northbank? is underway at the shipyard of William Doxford & Sons, Sunderland, 25 October 1956 (TWAM ref. DS.DOX/4/PH/1/819/1/8). This album documents the construction of the cargo ship ?Northbank? by the famous shipbuilding firm William Doxford & Sons at its Pallion yard, Sunderland. Most of these images are progress photographs, taken a week apart between September 1956 and January 1957 from approximately the same spot. They give a fascinating insight into how the vessel was built. (Copyright) We're happy for you to share this digital image within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.uk.

Subjects

williamdoxfordandsonsltd | pallion | sunderland | shipbuilding | shipyard | industry | industrial | hull | construction | northbank | ship | vessel | riverwear | wearside | cargoship | sideframes | northeastengland | blackandwhitephotograph | digitalimage | archives | industrialheritage | maritimeheritage | shipbuildingheritage | abstract | documentation | builtinsunderland | frames | 25october1956 | structure | platform | components | frame | progressphotograph | progression | pallionyard | september1956january1957 | fascinating | interesting | compelling | impressive | unitedkingdom | boxes | ladder | stairs | pile | buildings | bank | river | blur | mark | grain | label | date | insight | glimpse

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.864 Systems Modeling and Assessment for Policy (MIT) ESD.864 Systems Modeling and Assessment for Policy (MIT)

Description

This course explores how scientific information can be used to inform policy decision-making processes through the use of quantitative modeling techniques. It incorporates both hands-on analysis and practice using models as well as evaluation of the use and effectiveness of models in decision-making. The course assesses the full spectrum of model complexity from simple box model calculations to complex, global systems models. Issues addressed include scientific assessment processes; integrated assessment modeling; model frameworks; and scenarios. Examples focus on models and information used for earth system governance, with selected examples from other areas of application. This course explores how scientific information can be used to inform policy decision-making processes through the use of quantitative modeling techniques. It incorporates both hands-on analysis and practice using models as well as evaluation of the use and effectiveness of models in decision-making. The course assesses the full spectrum of model complexity from simple box model calculations to complex, global systems models. Issues addressed include scientific assessment processes; integrated assessment modeling; model frameworks; and scenarios. Examples focus on models and information used for earth system governance, with selected examples from other areas of application.

Subjects

scientific assessment process | scientific assessment process | integrated assessment modeling | integrated assessment modeling | model frameworks | model frameworks | systems modeling | systems modeling | policy-analysis techniques | policy-analysis techniques | climate change | climate change

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.888 Multidisciplinary System Design Optimization (MIT) 16.888 Multidisciplinary System Design Optimization (MIT)

Description

This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers. This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers.

Subjects

optimization | optimization | multidisciplinary design optimization | multidisciplinary design optimization | MDO | MDO | subsystem identification | subsystem identification | interface design | interface design | linear constrained optimization fomulation | linear constrained optimization fomulation | non-linear constrained optimization formulation | non-linear constrained optimization formulation | scalar optimization | scalar optimization | vector optimization | vector optimization | systems engineering | systems engineering | complex systems | complex systems | heuristic search methods | heuristic search methods | tabu search | tabu search | simulated annealing | simulated annealing | genertic algorithms | genertic algorithms | sensitivity | sensitivity | tradeoff analysis | tradeoff analysis | goal programming | goal programming | isoperformance | isoperformance | pareto optimality | pareto optimality | flowchart | flowchart | design vector | design vector | simulation model | simulation model | objective vector | objective vector | input | input | discipline | discipline | output | output | coupling | coupling | multiobjective optimization | multiobjective optimization | optimization algorithms | optimization algorithms | tradespace exploration | tradespace exploration | numerical techniques | numerical techniques | direct methods | direct methods | penalty methods | penalty methods | heuristic techniques | heuristic techniques | SA | SA | GA | GA | approximation methods | approximation methods | sensitivity analysis | sensitivity analysis | isoperformace | isoperformace | output evaluation | output evaluation | MSDO framework | MSDO framework

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.481J Analyzing and Accounting for Regional Economic Change (MIT) 11.481J Analyzing and Accounting for Regional Economic Change (MIT)

Description

In this course students examine and critique accounting frameworks, including accounting for the underground economy, multipliers, linkages, and supply chains used to assess employment and environmental impacts and infrastructure investments. They also assess the value of price indices, industrial location and employment measures, and shift-share analyses. Discussions of U.S. and foreign applications and their relation will be featured in the class. In this course students examine and critique accounting frameworks, including accounting for the underground economy, multipliers, linkages, and supply chains used to assess employment and environmental impacts and infrastructure investments. They also assess the value of price indices, industrial location and employment measures, and shift-share analyses. Discussions of U.S. and foreign applications and their relation will be featured in the class.

Subjects

economic growth | economic growth | international economies | international economies | developing countries | developing countries | growth | growth | restructuring | restructuring | innovation | innovation | accounting | accounting | industrialized and emerging countries | industrialized and emerging countries | accounting frameworks | accounting frameworks | microeconomics | microeconomics | macroeconomics | macroeconomics | political economy | political economy | china and the united states | china and the united states | ESD.284J | ESD.284J | 11.481 | 11.481 | 1.284 | 1.284 | ESD.284 | ESD.284 | 11.418 | 11.418 | ESD.192 | ESD.192

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Accounting for Regional Economic Change (MIT) Accounting for Regional Economic Change (MIT)

Description

This class surveys theories of regional growth, factor mobility, clustering, industrial restructuring, learning regions, and global supply chains from a political-economy perspective. It examines and critiques accounting frameworks including accounting for the underground economy, multipliers, linkages, and supply chains used to assess employment and environmental impacts and infrastructure investments. It will assess the value of price indices, industrial location and employment measures, and shift-share analyses. Discussions of U.S. and foreign applications and their relation will be featured in the class. This class surveys theories of regional growth, factor mobility, clustering, industrial restructuring, learning regions, and global supply chains from a political-economy perspective. It examines and critiques accounting frameworks including accounting for the underground economy, multipliers, linkages, and supply chains used to assess employment and environmental impacts and infrastructure investments. It will assess the value of price indices, industrial location and employment measures, and shift-share analyses. Discussions of U.S. and foreign applications and their relation will be featured in the class.

Subjects

economic growth | economic growth | international economies | international economies | developing countries | developing countries | growth | growth | restructuring | restructuring | innovation | innovation | accounting | accounting | industrialized and emerging countries | industrialized and emerging countries | accounting frameworks | accounting frameworks | microeconomics | microeconomics | macroeconomics | macroeconomics | political economy | political economy | china and the united states | china and the united states

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.481J Analyzing and Accounting for Regional Economic Change (MIT) 11.481J Analyzing and Accounting for Regional Economic Change (MIT)

Description

Students examine and critique accounting frameworks, including accounting for the underground economy, multipliers, linkages, and supply chains used to assess employment and environmental impacts and infrastructure investments. They also assess the value of price indices, industrial location and employment measures, and shift-share analyses. Discussions of US and foreign applications and their relation will be featured in the class. Students examine and critique accounting frameworks, including accounting for the underground economy, multipliers, linkages, and supply chains used to assess employment and environmental impacts and infrastructure investments. They also assess the value of price indices, industrial location and employment measures, and shift-share analyses. Discussions of US and foreign applications and their relation will be featured in the class.

Subjects

economic growth | economic growth | international economies | international economies | developing countries | developing countries | growth | growth | restructuring | restructuring | innovation | innovation | accounting | accounting | industrialized and emerging countries | industrialized and emerging countries | accounting frameworks | accounting frameworks | microeconomics | microeconomics | macroeconomics | macroeconomics | political economy | political economy | china and the united states | china and the united states | 11.481 | 11.481 | 1.284 | 1.284 | ESD.284 | ESD.284

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.050 Solid Mechanics (MIT) 1.050 Solid Mechanics (MIT)

Description

This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.Technical RequirementsJava® Virtual Machine software (automatically installed in most major web browsers) is required to run the .class files found on this course site. Java® plug-in software is required to run the This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.Technical RequirementsJava® Virtual Machine software (automatically installed in most major web browsers) is required to run the .class files found on this course site. Java® plug-in software is required to run the

Subjects

elastic stability | elastic stability | matrix methods | matrix methods | statically indeterminate systems | statically indeterminate systems | torsion | torsion | bending | bending | shearing | shearing | strains in structural elements | strains in structural elements | stress | stress | beams | beams | frames | frames | determinate planar structures | determinate planar structures | support conditions | support conditions | static equilibrium | static equilibrium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.10J Structural Mechanics (MIT) 13.10J Structural Mechanics (MIT)

Description

Fundamental concepts of structural mechanics with applications to marine, civil, and mechanical structures. Residual stresses. Thermal effects. Analysis of beams, columns, tensioned beams, trusses, frames, cables, and shafts of general shape and material, including composites. Elastic buckling of columns. Exact and approximate methods, energy methods, principle of virtual work, introduction to computational structural mechanics. Examples from civil, mechanical, offshore, and ship structures. Fundamental concepts of structural mechanics with applications to marine, civil, and mechanical structures. Residual stresses. Thermal effects. Analysis of beams, columns, tensioned beams, trusses, frames, cables, and shafts of general shape and material, including composites. Elastic buckling of columns. Exact and approximate methods, energy methods, principle of virtual work, introduction to computational structural mechanics. Examples from civil, mechanical, offshore, and ship structures.

Subjects

structural mechanics | structural mechanics | mechanical structures | mechanical structures | residual stresses | residual stresses | thermal effects | thermal effects | beams | beams | columns | columns | tensioned beams | tensioned beams | trusses | trusses | frames | frames | arches | arches | cables | cables | shafts | shafts | elastic buckling | elastic buckling | energy methods | energy methods | virtual work | virtual work | computational structural mechanics | computational structural mechanics | 1.573J | 1.573J | 13.10 | 13.10 | 1.573 | 1.573

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.440 Basic Structural Design (MIT) 4.440 Basic Structural Design (MIT)

Description

This course provides students with a basic knowledge of structural analysis and design for buildings, bridges and other structures. The course emphasizes the historical development of structural form and the evolution of structural design knowledge, from Gothic cathedrals to long span suspension bridges. Students will investigate the behavior of structural systems and elements through design exercises, case studies, and load testing of models. Students will design structures using timber, masonry, steel, and concrete and will gain an appreciation of the importance of structural design today, with an emphasis on environmental impact of large scale construction. This course provides students with a basic knowledge of structural analysis and design for buildings, bridges and other structures. The course emphasizes the historical development of structural form and the evolution of structural design knowledge, from Gothic cathedrals to long span suspension bridges. Students will investigate the behavior of structural systems and elements through design exercises, case studies, and load testing of models. Students will design structures using timber, masonry, steel, and concrete and will gain an appreciation of the importance of structural design today, with an emphasis on environmental impact of large scale construction.

Subjects

structural analysis | structural analysis | structural design | structural design | historical structures | historical structures | environment | environment | sustainable construction | sustainable construction | graphical analysis | graphical analysis | environmental assessment | environmental assessment | beam | beam | column | column | truss | truss | frame | frame | arch | arch | structural systems | structural systems | model building | model building | design exercises | design exercises | compression | compression | tension | tension | axial forces | axial forces | structural failures | structural failures | timber | timber | steel | steel | concrete | concrete | sustainable structures | sustainable structures

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.101 Experiencing Architecture Studio (MIT) 4.101 Experiencing Architecture Studio (MIT)

Description

This course uses scale models to design environments that orchestrate contrasting material properties and conventional constructional systems to create places that foster specific ways of inhabiting space. It also demonstrates how architecture differs from other forms of design. Intended for students to test aptitude for architectural design and to experience an unfamiliar mode of thought, it's conducted in a studio format, with lectures on architectural theory and history, and structured for students with no previous experience in design. Required of Architecture majors. This course uses scale models to design environments that orchestrate contrasting material properties and conventional constructional systems to create places that foster specific ways of inhabiting space. It also demonstrates how architecture differs from other forms of design. Intended for students to test aptitude for architectural design and to experience an unfamiliar mode of thought, it's conducted in a studio format, with lectures on architectural theory and history, and structured for students with no previous experience in design. Required of Architecture majors.

Subjects

spatial organization | spatial organization | concatenate | concatenate | concrete | concrete | wood | wood | frame | frame | construction | construction | design | design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.123 Architectural Design, Level I: Perceptions and Processes (MIT) 4.123 Architectural Design, Level I: Perceptions and Processes (MIT)

Description

This studio explores the notion of in-between by engaging several relationships; the relationship between intervention and perception, between representation and notation and between the fixed and the temporal. In the Exactitude in Science, Jorge Luis Borges tells the perverse tale of the one to one scale map, where the desire for precision and power leads to the escalating production of larger and more accurate maps of the territory. For Jean Baudrillard, "The territory no longer precedes the map nor survives it. …it is the map that precedes the territory... and thus, it would be the territory whose shreds are slowly rotting across the map." The map or the territory, left to ruin-shredding across the 'other', beautifully captures the tension between reality and representati This studio explores the notion of in-between by engaging several relationships; the relationship between intervention and perception, between representation and notation and between the fixed and the temporal. In the Exactitude in Science, Jorge Luis Borges tells the perverse tale of the one to one scale map, where the desire for precision and power leads to the escalating production of larger and more accurate maps of the territory. For Jean Baudrillard, "The territory no longer precedes the map nor survives it. …it is the map that precedes the territory... and thus, it would be the territory whose shreds are slowly rotting across the map." The map or the territory, left to ruin-shredding across the 'other', beautifully captures the tension between reality and representati

Subjects

in-between | in-between | relationships | relationships | intervention and perception | intervention and perception | representation and notation | representation and notation | fixed and temporal | fixed and temporal | Borges | Borges | mapping | mapping | territory | territory | Baudrillard | Baudrillard | the 'other' | the 'other' | reality and representation | reality and representation | collective desire and territorial surface | collective desire and territorial surface | filter | filter | create | create | frame | frame | scale | scale | orient | orient | project | project | agency | agency | landscape | landscape | architecture | architecture | urbanism | urbanism | representation versus real | representation versus real | design | design | perception | perception | representation | representation | fixed | fixed | temporal | temporal | map | map | reality | reality | collective desire | collective desire | territorial surface | territorial surface

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.01SC Fundamentals of Biology (MIT) 7.01SC Fundamentals of Biology (MIT)

Description

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality. Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.

Subjects

amino acids | amino acids | carboxyl group | carboxyl group | amino group | amino group | side chains | side chains | polar | polar | hydrophobic | hydrophobic | primary structure | primary structure | secondary structure | secondary structure | tertiary structure | tertiary structure | quaternary structure | quaternary structure | x-ray crystallography | x-ray crystallography | alpha helix | alpha helix | beta sheet | beta sheet | ionic bond | ionic bond | non-polar bond | non-polar bond | van der Waals interactions | van der Waals interactions | proton gradient | proton gradient | cyclic photophosphorylation | cyclic photophosphorylation | sunlight | sunlight | ATP | ATP | chlorophyll | chlorophyll | chlorophyll a | chlorophyll a | electrons | electrons | hydrogen sulfide | hydrogen sulfide | biosynthesis | biosynthesis | non-cyclic photophosphorylation | non-cyclic photophosphorylation | photosystem II | photosystem II | photosystem I | photosystem I | cyanobacteria | cyanobacteria | chloroplast | chloroplast | stroma | stroma | thylakoid membrane | thylakoid membrane | Genetics | Genetics | Mendel | Mendel | Mendel's Laws | Mendel's Laws | cloning | cloning | restriction enzymes | restriction enzymes | vector | vector | insert DNA | insert DNA | ligase | ligase | library | library | E.Coli | E.Coli | phosphatase | phosphatase | yeast | yeast | transformation | transformation | ARG1 gene | ARG1 gene | ARG1 mutant yeast | ARG1 mutant yeast | yeast wild-type | yeast wild-type | cloning by complementation | cloning by complementation | Human Beta Globin gene | Human Beta Globin gene | protein tetramer | protein tetramer | vectors | vectors | antibodies | antibodies | human promoter | human promoter | splicing | splicing | mRNA | mRNA | cDNA | cDNA | reverse transcriptase | reverse transcriptase | plasmid | plasmid | electrophoresis | electrophoresis | DNA sequencing | DNA sequencing | primer | primer | template | template | capillary tube | capillary tube | laser detector | laser detector | human genome project | human genome project | recombinant DNA | recombinant DNA | clone | clone | primer walking | primer walking | subcloning | subcloning | computer assembly | computer assembly | shotgun sequencing | shotgun sequencing | open reading frame | open reading frame | databases | databases | polymerase chain reaction (PCR) | polymerase chain reaction (PCR) | polymerase | polymerase | nucleotides | nucleotides | Thermus aquaticus | Thermus aquaticus | Taq polymerase | Taq polymerase | thermocycler | thermocycler | resequencing | resequencing | in vitro fertilization | in vitro fertilization | pre-implantation diagnostics | pre-implantation diagnostics | forensics | forensics | genetic engineering | genetic engineering | DNA sequences | DNA sequences | therapeutic proteins | therapeutic proteins | E. coli | E. coli | disease-causing mutations | disease-causing mutations | cleavage of DNA | cleavage of DNA | bacterial transformation | bacterial transformation | recombinant DNA revolution | recombinant DNA revolution | biotechnology industry | biotechnology industry | Robert Swanson | Robert Swanson | toxin gene | toxin gene | pathogenic bacterium | pathogenic bacterium | biomedical research | biomedical research | S. Pyogenes | S. Pyogenes | origin of replication | origin of replication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.965 Reflective Practice: An Approach for Expanding Your Learning Frontiers (MIT) 11.965 Reflective Practice: An Approach for Expanding Your Learning Frontiers (MIT)

Description

The course is an introduction to the approach of Reflective Practice developed by Donald Schön. It is an approach that enables professionals to understand how they use their knowledge in practical situations and how they can combine practice and learning in a more effective way. Through greater awareness of how they deploy their knowledge in practical situations, professionals can increase their capacities of learning in a more timely way. Understanding how they frame situations and ideas helps professionals to achieve greater flexibility and increase their capacity of conceptual innovation. The objective of the course is to introduce students to the approach and methods of reflective practice by raising their awareness about their own cognitive resources and how they use them in thei The course is an introduction to the approach of Reflective Practice developed by Donald Schön. It is an approach that enables professionals to understand how they use their knowledge in practical situations and how they can combine practice and learning in a more effective way. Through greater awareness of how they deploy their knowledge in practical situations, professionals can increase their capacities of learning in a more timely way. Understanding how they frame situations and ideas helps professionals to achieve greater flexibility and increase their capacity of conceptual innovation. The objective of the course is to introduce students to the approach and methods of reflective practice by raising their awareness about their own cognitive resources and how they use them in thei

Subjects

reflective practice | Donald Schon | Chris Argyris | conceptual innovation | knowledge generation | espoused theory | theory in use | reflection | tacit knowledge | explicit knowledge | learning cycles | reframing | conceptual frameworks | critical moments | experimentation | speculation | modeling | dialogue | theories | action | thinking | virtual worlds | mental model | framing | justice | equality | power | assumptions | intractable controversies | reflective practice | Donald Schon | Chris Argyris | conceptual innovation | knowledge generation | espoused theory | theory in use | reflection | tacit knowledge | explicit knowledge | learning cycles | reframing | conceptual frameworks | critical moments | experimentation | speculation | modeling | dialogue | theories | action | thinking | virtual worlds | mental model | framing | justice | equality | power | assumptions | intractable controversies | diagrams | diagrams | reflective practice | reflective practice | Donald Schon | Donald Schon | practice | practice | learning | learning | conceptual innovation | conceptual innovation | cognitive resources | cognitive resources | socialization | socialization | externalization | externalization | combination | combination | internalization | internalization | SECI Cycle of Knowledge | SECI Cycle of Knowledge

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.050 Solid Mechanics (MIT) 1.050 Solid Mechanics (MIT)

Description

Includes audio/video content: AV faculty introductions. 1.050 is a sophomore-level engineering mechanics course, commonly labelled "Statics and Strength of Materials" or "Solid Mechanics I." This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking. Includes audio/video content: AV faculty introductions. 1.050 is a sophomore-level engineering mechanics course, commonly labelled "Statics and Strength of Materials" or "Solid Mechanics I." This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.

Subjects

solid mechanics | solid mechanics | engineering design | engineering design | open ended exercises | open ended exercises | matrix analysis of structures | matrix analysis of structures | structural mechanics | structural mechanics | static equilibrium | static equilibrium | force resultants | force resultants | support conditions | support conditions | determinate planar structures | determinate planar structures | beams | beams | trusses | trusses | frames | frames | stress | stress | strain | strain | shear | shear | bending | bending | torsion | torsion | matrix methods | matrix methods | elastic stability | elastic stability | design exercises | design exercises | interactive exercises | interactive exercises | systems thinking | systems thinking

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.033 Mechanics of Material Systems: An Energy Approach (MIT) 1.033 Mechanics of Material Systems: An Energy Approach (MIT)

Description

1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students. 1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students.

Subjects

continuum mechanics | continuum mechanics | material modeling | material modeling | engineering materials | engineering materials | energy principles: deformation and strain | energy principles: deformation and strain | momentum balance | momentum balance | stress | stress | stress states | stress states | elasticity and elasticity bounds | elasticity and elasticity bounds | plasticity | plasticity | yield design | yield design | first energy principles | first energy principles | deformation | deformation | strain | strain | elasticity bounds | elasticity bounds | unified mechanistic language | unified mechanistic language | thermodynamics | thermodynamics | engineering structures | engineering structures | unified framework | unified framework | irreversible processes | irreversible processes | structural engineering | structural engineering | soil mechanics | soil mechanics | mechanical engineering | mechanical engineering | materials science | materials science | solids | solids | durability mechanics | durability mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.884 Complex Digital Systems (MIT) 6.884 Complex Digital Systems (MIT)

Description

This course is offered to graduates and is a project-oriented course to teach new methodologies for designing multi-million-gate CMOS VLSI chips using high-level synthesis tools in conjunction with standard commercial EDA tools. The emphasis is on modular and robust designs, reusable modules, correctness by construction, architectural exploration, and meeting the area, timing, and power constraints within standard cell and FPGA frameworks. This course is offered to graduates and is a project-oriented course to teach new methodologies for designing multi-million-gate CMOS VLSI chips using high-level synthesis tools in conjunction with standard commercial EDA tools. The emphasis is on modular and robust designs, reusable modules, correctness by construction, architectural exploration, and meeting the area, timing, and power constraints within standard cell and FPGA frameworks.

Subjects

VLSI implementation | VLSI implementation | project-oriented | project-oriented | digital systems | digital systems | multi-million-gate | multi-million-gate | CMOS | CMOS | VLSI chips | VLSI chips | high-level synthesis tools | high-level synthesis tools | standard commercial EDA tools | standard commercial EDA tools | modular | modular | robust | robust | designs | designs | reusable modules | reusable modules | construction | construction | architectural exploration | architectural exploration | area | area | timing | timing | power | power | constraints | constraints | standard cell | standard cell | FPGA | FPGA | frameworks | frameworks

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01L Physics I: Classical Mechanics (MIT) 8.01L Physics I: Classical Mechanics (MIT)

Description

8.01L is an introductory mechanics course, which covers all the topics covered in 8.01T. The class meets throughout the fall, and continues throughout the Independent Activities Period (IAP). 8.01L is an introductory mechanics course, which covers all the topics covered in 8.01T. The class meets throughout the fall, and continues throughout the Independent Activities Period (IAP).

Subjects

Introductory classical mechanics | Introductory classical mechanics | space | space | time | time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | forces | forces | static equilibrium | static equilibrium | particle dynamics | particle dynamics | conservation of momentum | conservation of momentum | relative inertial frames | relative inertial frames | non-inertial force | non-inertial force | work | work | potential energy | potential energy | conservation of energy | conservation of energy | ideal gas | ideal gas | rigid bodies | rigid bodies | rotational dynamics | rotational dynamics | vibrational motion | vibrational motion | conservation of angular momentum | conservation of angular momentum | central force motions | central force motions | fluid mechanics | fluid mechanics | Technology-Enabled Active Learning | Technology-Enabled Active Learning

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01T Physics I (MIT) 8.01T Physics I (MIT)

Description

This freshman-level course is an introduction to classical mechanics. The subject is taught using the TEAL (Technology Enabled Active Learning) format which features small group interaction via table-top experiments utilizing laptops for data acquisition and problem solving workshops. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation. This freshman-level course is an introduction to classical mechanics. The subject is taught using the TEAL (Technology Enabled Active Learning) format which features small group interaction via table-top experiments utilizing laptops for data acquisition and problem solving workshops. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation.

Subjects

classical mechanics | classical mechanics | Space and time | Space and time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | forces and equilibrium | forces and equilibrium | experimental basis of Newton's laws | experimental basis of Newton's laws | particle dynamics | particle dynamics | universal gravitation | universal gravitation | collisions and conservation laws | collisions and conservation laws | work and potential energy | work and potential energy | vibrational motion | vibrational motion | conservative forces | conservative forces | inertial forces and non-inertial frames | inertial forces and non-inertial frames | central force motions | central force motions | rigid bodies | rigid bodies | rotational dynamics | rotational dynamics | rigid bodies and rotational dynamics | rigid bodies and rotational dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01 Physics I (MIT) 8.01 Physics I (MIT)

Description

Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics. Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics.

Subjects

classical mechanics | classical mechanics | Space and time | Space and time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | experimental basis of Newton's laws | experimental basis of Newton's laws | particle dynamics | particle dynamics | universal gravitation | universal gravitation | collisions and conservation laws | collisions and conservation laws | work and potential energy | work and potential energy | vibrational motion | vibrational motion | conservative forces | conservative forces | central force motions | central force motions | inertial forces and non-inertial frames | inertial forces and non-inertial frames | rigid bodies and rotational dynamics | rigid bodies and rotational dynamics | forces and equilibrium | forces and equilibrium | space | space | time | time | space-time | space-time | planar motion | planar motion | forces | forces | equilibrium | equilibrium | Newton?s laws | Newton?s laws | collisions | collisions | conservation laws | conservation laws | work | work | potential energy | potential energy | inertial forces | inertial forces | non-inertial forces | non-inertial forces | rigid bodies | rigid bodies | rotational dynamics | rotational dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.675 The Development of Object and Face Recognition (MIT) 9.675 The Development of Object and Face Recognition (MIT)

Description

This course takes a 'back to the beginning' view that aims to better understand the end result. What might be the developmental processes that lead to the organization of 'booming, buzzing confusions' into coherent visual objects? This course examines key experimental results and computational proposals pertinent to the discovery of objects in complex visual inputs. The structure of the course is designed to get students to learn and to focus on the genre of study as a whole; to get a feel for how science is done in this field. This course takes a 'back to the beginning' view that aims to better understand the end result. What might be the developmental processes that lead to the organization of 'booming, buzzing confusions' into coherent visual objects? This course examines key experimental results and computational proposals pertinent to the discovery of objects in complex visual inputs. The structure of the course is designed to get students to learn and to focus on the genre of study as a whole; to get a feel for how science is done in this field.

Subjects

computational theories of human cognition | computational theories of human cognition | principles of inductive learning and inference | principles of inductive learning and inference | representation of knowledge | representation of knowledge | computational frameworks | computational frameworks | Bayesian models | Bayesian models | hierarchical Bayesian models | hierarchical Bayesian models | probabilistic graphical models | probabilistic graphical models | nonparametric statistical models | nonparametric statistical models | Bayesian Occam's razor | Bayesian Occam's razor | sampling algorithms for approximate learning and inference | sampling algorithms for approximate learning and inference | probabilistic models defined over structured representations such as first-order logic | probabilistic models defined over structured representations such as first-order logic | grammars | grammars | relational schemas | relational schemas | core aspects of cognition | core aspects of cognition | concept learning | concept learning | concept categorization | concept categorization | causal reasoning | causal reasoning | theory formation | theory formation | language acquisition | language acquisition | social inference | social inference

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata