Searching for game : 580 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6.972 Game Theory and Mechanism Design (MIT) 6.972 Game Theory and Mechanism Design (MIT)

Description

This course is offered to graduates and is an introduction to fundamentals of game theory and mechanism design with motivations drawn from various applications including distributed control of wireline and wireless communication networks, incentive-compatible/dynamic resource allocation, and pricing. Emphasis is placed on the foundations of the theory, mathematical tools, as well as modeling and the equilibrium notions in different environments. Topics covered include: normal form games, learning in games, supermodular games, potential games, dynamic games, subgame perfect equilibrium, bargaining, repeated games, auctions, mechanism design, cooperative game theory, network and congestion games, and price of anarchy. This course is offered to graduates and is an introduction to fundamentals of game theory and mechanism design with motivations drawn from various applications including distributed control of wireline and wireless communication networks, incentive-compatible/dynamic resource allocation, and pricing. Emphasis is placed on the foundations of the theory, mathematical tools, as well as modeling and the equilibrium notions in different environments. Topics covered include: normal form games, learning in games, supermodular games, potential games, dynamic games, subgame perfect equilibrium, bargaining, repeated games, auctions, mechanism design, cooperative game theory, network and congestion games, and price of anarchy.

Subjects

game theory | game theory | mechanism design | mechanism design | mathematical tools | mathematical tools | normal form games | normal form games | existence and computation of equilibria | existence and computation of equilibria | supermodular games | supermodular games | potential games | potential games | subgame perfect equilibrium | subgame perfect equilibrium | dynamic games | dynamic games | bargaining | bargaining | repeated games | repeated games | games with incomplete/imperfect information | games with incomplete/imperfect information | auctions | auctions | cooperative game theory | cooperative game theory | network and congestion games | network and congestion games | pricing | pricing | price of anarchy | price of anarchy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lecture 8: Strategy, Skill, and Chance, Part 1 Lecture 8: Strategy, Skill, and Chance, Part 1

Description

Description: Games contain various skill requirements, chance elements, and information availability, which guide strategy development. Changing the balance between these factors can create very different player experiences. Instructors/speakers: Philip Tan, Jason BegyKeywords: competition, strategy, game theory, roleplaying, vertigo, mimicry, ilinx, sports, alea, gameshows, randomness, games of skill, games of chance, luck, information theory, communication channel, noise, game state, card games, board games, determinism, probability, decision tree, utility, Nash equilibriumTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA) Description: Games contain various skill requirements, chance elements, and information availability, which guide strategy development. Changing the balance between these factors can create very different player experiences. Instructors/speakers: Philip Tan, Jason BegyKeywords: competition, strategy, game theory, roleplaying, vertigo, mimicry, ilinx, sports, alea, gameshows, randomness, games of skill, games of chance, luck, information theory, communication channel, noise, game state, card games, board games, determinism, probability, decision tree, utility, Nash equilibriumTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA)

Subjects

competition | competition | strategy | strategy | game theory | game theory | roleplaying | roleplaying | vertigo | vertigo | mimicry | mimicry | ilinx | ilinx | sports | sports | alea | alea | gameshows | gameshows | randomness | randomness | games of skill | games of skill | games of chance | games of chance | luck | luck | information theory | information theory | communication channel | communication channel | noise | noise | game state | game state | card games | card games | board games | board games | determinism | determinism | probability | probability | decision tree | decision tree | utility | utility | Nash equilibrium | Nash equilibrium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/courses/comparative-media-studies/cms-608-game-design-fall-2010/audio-lectures/rss.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lecture 25: Fiction and Stories in Games Lecture 25: Fiction and Stories in Games

Description

Description: Many games incorporate story elements, to drive the plot, set the scene, create engaging characters, etc. Some even use player actions to build an open-ended adventure. Clara Fernandez-Vara talks about how and why to use stories in games. Instructors/speakers: Philip Tan, Jason Begy, Clara Fernandez-Vara (Singapore-MIT GAMBIT Game Lab)Keywords: narrative, environmental storytelling, roleplaying, emergence, storybuilding, non-digital games, digital games, game state, stories, fiction, setting, characters, theme, progression, improvisation, micronarrative, premise, game event, game mechanic, ethics, board games, card gamesTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA) Description: Many games incorporate story elements, to drive the plot, set the scene, create engaging characters, etc. Some even use player actions to build an open-ended adventure. Clara Fernandez-Vara talks about how and why to use stories in games. Instructors/speakers: Philip Tan, Jason Begy, Clara Fernandez-Vara (Singapore-MIT GAMBIT Game Lab)Keywords: narrative, environmental storytelling, roleplaying, emergence, storybuilding, non-digital games, digital games, game state, stories, fiction, setting, characters, theme, progression, improvisation, micronarrative, premise, game event, game mechanic, ethics, board games, card gamesTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA)

Subjects

narrative | narrative | environmental storytelling | environmental storytelling | roleplaying | roleplaying | emergence | emergence | storybuilding | storybuilding | non-digital games | non-digital games | digital games | digital games | game state | game state | stories | stories | fiction | fiction | setting | setting | characters | characters | theme | theme | progression | progression | improvisation | improvisation | micronarrative | micronarrative | premise | premise | game event | game event | game mechanic | game mechanic | ethics | ethics | board games | board games | card games | card games

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/courses/comparative-media-studies/cms-608-game-design-fall-2010/audio-lectures/rss.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.304 Undergraduate Seminar in Discrete Mathematics (MIT) 18.304 Undergraduate Seminar in Discrete Mathematics (MIT)

Description

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.

Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.254 Game Theory with Engineering Applications (MIT) 6.254 Game Theory with Engineering Applications (MIT)

Description

This course is an introduction to the fundamentals of game theory and mechanism design. Motivations are drawn from engineered/networked systems (including distributed control of wireline and wireless communication networks, incentive-compatible/dynamic resource allocation, multi-agent systems, pricing and investment decisions in the Internet), and social models (including social and economic networks). The course emphasizes theoretical foundations, mathematical tools, modeling, and equilibrium notions in different environments. This course is an introduction to the fundamentals of game theory and mechanism design. Motivations are drawn from engineered/networked systems (including distributed control of wireline and wireless communication networks, incentive-compatible/dynamic resource allocation, multi-agent systems, pricing and investment decisions in the Internet), and social models (including social and economic networks). The course emphasizes theoretical foundations, mathematical tools, modeling, and equilibrium notions in different environments.

Subjects

game theory | game theory | strategic form games | strategic form games | learning | evolution | and computation | learning | evolution | and computation | extensive games with perfect information | extensive games with perfect information | repeated games | repeated games | games with incomplete information | games with incomplete information | mechanism design | mechanism design | network effects | network effects | games over networks | games over networks

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.127J Computer Games and Simulations for Education and Exploration (MIT) 11.127J Computer Games and Simulations for Education and Exploration (MIT)

Description

This course immerses students in the process of building and testing their own digital and board games in order to better understand how we learn from games. We explore the design and use of games in the classroom in addition to research and development issues associated with computer–based (desktop and handheld) and non–computer–based media. In developing their own games, students examine what and how people learn from them (including field testing of products), as well as how games can be implemented in educational settings. This course immerses students in the process of building and testing their own digital and board games in order to better understand how we learn from games. We explore the design and use of games in the classroom in addition to research and development issues associated with computer–based (desktop and handheld) and non–computer–based media. In developing their own games, students examine what and how people learn from them (including field testing of products), as well as how games can be implemented in educational settings.

Subjects

11.127 | 11.127 | CMS.590 | CMS.590 | CMS.836 | CMS.836 | 11.252 | 11.252 | education | education | computers | computers | computer games | computer games | video games | video games | board games | board games | game design | game design | minecraft | minecraft | kerbal space program | kerbal space program | fiasco | fiasco | dominion | dominion | agricola | agricola | pandemic | pandemic | a few acres of snow | a few acres of snow | chrononauts | chrononauts | apples to apples | apples to apples | learning | learning | gamers | gamers | digital games | digital games | multiplayer | multiplayer | prototypes | prototypes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.304 Undergraduate Seminar in Discrete Mathematics (MIT) 18.304 Undergraduate Seminar in Discrete Mathematics (MIT)

Description

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.

Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.972 Game Theory and Mechanism Design (MIT)

Description

This course is offered to graduates and is an introduction to fundamentals of game theory and mechanism design with motivations drawn from various applications including distributed control of wireline and wireless communication networks, incentive-compatible/dynamic resource allocation, and pricing. Emphasis is placed on the foundations of the theory, mathematical tools, as well as modeling and the equilibrium notions in different environments. Topics covered include: normal form games, learning in games, supermodular games, potential games, dynamic games, subgame perfect equilibrium, bargaining, repeated games, auctions, mechanism design, cooperative game theory, network and congestion games, and price of anarchy.

Subjects

game theory | mechanism design | mathematical tools | normal form games | existence and computation of equilibria | supermodular games | potential games | subgame perfect equilibrium | dynamic games | bargaining | repeated games | games with incomplete/imperfect information | auctions | cooperative game theory | network and congestion games | pricing | price of anarchy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lecture 32: Live Action Games Lecture 32: Live Action Games

Description

Description: "Live action" describes a wide range of activities, from sports, to real-time roleplaying, to playground/party games. Careful choices about mechanics, abstraction, and communication help create an engaging experience without physical or emotional harm. Instructors/speakers: Philip Tan, Jason BegyKeywords: roleplaying, verisimilitude, storybuilding, persona, improvisation, sports, party games, live-action games, game mechanic, mimicry, acting, character, dissociation, abstraction, war games, game master, randomness, feasibility, information, competition, collaboration, storytelling, ethics, MIT Assassin's Guild, emergenceTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA) Description: "Live action" describes a wide range of activities, from sports, to real-time roleplaying, to playground/party games. Careful choices about mechanics, abstraction, and communication help create an engaging experience without physical or emotional harm. Instructors/speakers: Philip Tan, Jason BegyKeywords: roleplaying, verisimilitude, storybuilding, persona, improvisation, sports, party games, live-action games, game mechanic, mimicry, acting, character, dissociation, abstraction, war games, game master, randomness, feasibility, information, competition, collaboration, storytelling, ethics, MIT Assassin's Guild, emergenceTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA)

Subjects

roleplaying | roleplaying | verisimilitude | verisimilitude | storybuilding | storybuilding | persona | persona | improvisation | improvisation | sports | sports | party games | party games | live-action games | live-action games | game mechanic | game mechanic | mimicry | mimicry | acting | acting | character | character | dissociation | dissociation | abstraction | abstraction | war games | war games | game master | game master | randomness | randomness | feasibility | feasibility | information | information | competition | competition | collaboration | collaboration | storytelling | storytelling | ethics | ethics | MIT Assassin's Guild | MIT Assassin's Guild | emergence | emergence

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/courses/comparative-media-studies/cms-608-game-design-fall-2010/audio-lectures/rss.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

CMS.600 Videogame Theory and Analysis (MIT) CMS.600 Videogame Theory and Analysis (MIT)

Description

This course will serve as an introduction to the interdisciplinary academic study of videogames, examining their cultural, educational, and social functions in contemporary settings. By playing, analyzing, and reading and writing about videogames, we will examine debates surrounding how they function within socially situated contexts in order to better understand games' influence on and reflections of society. Readings will include contemporary videogame theory and the completion of a contemporary commercial videogame chosen in consultation with the instructor. This course will serve as an introduction to the interdisciplinary academic study of videogames, examining their cultural, educational, and social functions in contemporary settings. By playing, analyzing, and reading and writing about videogames, we will examine debates surrounding how they function within socially situated contexts in order to better understand games' influence on and reflections of society. Readings will include contemporary videogame theory and the completion of a contemporary commercial videogame chosen in consultation with the instructor.

Subjects

online game | online game | gaming | gaming | computer games | computer games | MMOG | MMOG | simulation | simulation | massively multiplayer online game | massively multiplayer online game | critical theory | critical theory | cultural studies | cultural studies | critical analysis | critical analysis | gender | gender | game culture | game culture | media | media | video game | video game | student work | student work | race | race | storytelling | storytelling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

CMS.998 Videogame Theory and Analysis (MIT) CMS.998 Videogame Theory and Analysis (MIT)

Description

This course is an introduction to the interdisciplinary study of commercial videogames as texts, examining their cultural, educational, and social functions in contemporary settings. Students play and analyze videogames while examining debates surrounding how games function within socially situated contexts. Readings include contemporary game theory (Gee, Squire, Steinkuehler, Jenkins, Klopfer, Zimmerman and Salen, Juul, Bartle, Taylor, Aarseth) and the completion of a contemporary commercial videogame chosen in consultation with the instructor. This course is an introduction to the interdisciplinary study of commercial videogames as texts, examining their cultural, educational, and social functions in contemporary settings. Students play and analyze videogames while examining debates surrounding how games function within socially situated contexts. Readings include contemporary game theory (Gee, Squire, Steinkuehler, Jenkins, Klopfer, Zimmerman and Salen, Juul, Bartle, Taylor, Aarseth) and the completion of a contemporary commercial videogame chosen in consultation with the instructor.

Subjects

online game | online game | gaming | gaming | computer games | computer games | MMOG | MMOG | simulation | simulation | massively multiplayer online game | massively multiplayer online game | critical theory | critical theory | cultural studies | cultural studies | critical analysis | critical analysis | gender | gender | game culture | game culture | media | media | video game | video game

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

CMS.616J Games and Culture (MIT) CMS.616J Games and Culture (MIT)

Description

This course examines the social, cultural, economic, and political aspects of digital games. Topics include the socio-technical aspects of digital gaming, embodiment and space, communities, spectatorship and performance, gender, race, sexuality, e-sports and sports games, and the politics and economics of production processes, including co-creation and intellectual property. This course examines the social, cultural, economic, and political aspects of digital games. Topics include the socio-technical aspects of digital gaming, embodiment and space, communities, spectatorship and performance, gender, race, sexuality, e-sports and sports games, and the politics and economics of production processes, including co-creation and intellectual property.

Subjects

CMS.616 | CMS.616 | games | games | digital games | digital games | video games | video games | gender | gender | race | race | sexuality | sexuality | e-sports | e-sports | sports games | sports games | politics | politics | economics | economics | computer games | computer games | competitive gaming | competitive gaming | spectatorship | spectatorship

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.12 Economic Applications of Game Theory (MIT) 14.12 Economic Applications of Game Theory (MIT)

Description

Game Theory, also known as Multiperson Decision Theory, is the analysis of situations in which the payoff of a decision maker depends not only on his own actions but also on those of others. Game Theory has applications in several fi…elds, such as economics, politics, law, biology, and computer science. In this course, I will introduce the basic tools of game theoretic analysis. In the process, I will outline some of the many applications of Game Theory, primarily in economics. Game Theory, also known as Multiperson Decision Theory, is the analysis of situations in which the payoff of a decision maker depends not only on his own actions but also on those of others. Game Theory has applications in several fi…elds, such as economics, politics, law, biology, and computer science. In this course, I will introduce the basic tools of game theoretic analysis. In the process, I will outline some of the many applications of Game Theory, primarily in economics.

Subjects

game theory | game theory | economics | economics | multiperson decision theory | multiperson decision theory | payoff | payoff | games | games | backward induction | backward induction | subgame perfection | subgame perfection | implicit cartels | implicit cartels | dynamic games | dynamic games

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.123 Microeconomic Theory III (MIT) 14.123 Microeconomic Theory III (MIT)

Description

This half-semester course discusses decision theory and topics in game theory. We present models of individual decision-making under certainty and uncertainty. Topics include preference orderings, expected utility, risk, stochastic dominance, supermodularity, monotone comparative statics, background risk, game theory, rationalizability, iterated strict dominance multi-stage games, sequential equilibrium, trembling-hand perfection, stability, signaling games, theory of auctions, global games, repeated games, and correlation. This half-semester course discusses decision theory and topics in game theory. We present models of individual decision-making under certainty and uncertainty. Topics include preference orderings, expected utility, risk, stochastic dominance, supermodularity, monotone comparative statics, background risk, game theory, rationalizability, iterated strict dominance multi-stage games, sequential equilibrium, trembling-hand perfection, stability, signaling games, theory of auctions, global games, repeated games, and correlation.

Subjects

microeconomics | microeconomics | microeconomic theory | microeconomic theory | preference | preference | utility representation | utility representation | expected utility | expected utility | positive interpretation | positive interpretation | normative interpretation | normative interpretation | risk | risk | stochastic dominance | stochastic dominance | insurance | insurance | finance | finance | supermodularity | supermodularity | comparative statics | comparative statics | decision theory | decision theory | game theory | game theory | rationalizability | rationalizability | iterated strict dominance | iterated strict dominance | iterated conditional dominance | iterated conditional dominance | bargaining | bargaining | equilibrium | equilibrium | sequential equilibrium | sequential equilibrium | trembling-hand perfection | trembling-hand perfection | signaling games | signaling games | auctions | auctions | global games | global games | repeated games | repeated games | correlation | correlation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

24.222 Decisions, Games, and Rational Choice (MIT) 24.222 Decisions, Games, and Rational Choice (MIT)

Description

Foundations and philosophical applications of Bayesian decision theory, game theory and theory of collective choice. Why should degrees of belief be probabilities? Is it always rational to maximize expected utility? If so, why and what is its utility? What is a solution to a game? What does a game-theoretic solution concept such as Nash equilibrium say about how rational players will, or should, act in a game? How are the values and the actions of groups, institutions and societies related to the values and actions of the individuals that constitute them? Foundations and philosophical applications of Bayesian decision theory, game theory and theory of collective choice. Why should degrees of belief be probabilities? Is it always rational to maximize expected utility? If so, why and what is its utility? What is a solution to a game? What does a game-theoretic solution concept such as Nash equilibrium say about how rational players will, or should, act in a game? How are the values and the actions of groups, institutions and societies related to the values and actions of the individuals that constitute them?

Subjects

decisions | decisions | games | games | rational choice | rational choice | causal decision theory | causal decision theory | social choice theory | social choice theory | Nash equilibrium | Nash equilibrium | voting | voting | game theory | game theory | dictatorial games | dictatorial games | non-dictatorial games | non-dictatorial games

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-24.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.127J Computer Games and Simulations for Investigation and Education (MIT) 11.127J Computer Games and Simulations for Investigation and Education (MIT)

Description

In this project-based course, students from all disciplines are encouraged to understand how we learn from interactive computer environments, and delve into the process of designing and understanding simulations and games for learning. In this project-based course, students from all disciplines are encouraged to understand how we learn from interactive computer environments, and delve into the process of designing and understanding simulations and games for learning.

Subjects

education | education | computers | computers | computer games | computer games | simulations | simulations | edu-tainment | edu-tainment | games | games | video games | video games | board games | board games

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lecture 9: Strategy, Skill, and Chance, Part 2 Lecture 9: Strategy, Skill, and Chance, Part 2

Description

Description: This lecture reviews the concepts of information flow and uncertainty, analyzing well-known games in these terms. Examples include Scrabble, Go Fish, Mario Kart, Monopoly, chess, poker, War, and Settlers of Catan. Next, students consider feedback loops. Instructors/speakers: Philip Tan, Jason BegyKeywords: complexity, determinism, randomness, uncertainty, strategy, games of skill, games of chance, playtesting, information theory, risk, game state, board games, probability, cybernetics, positive feedback loop, negative feedback loopTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA) Description: This lecture reviews the concepts of information flow and uncertainty, analyzing well-known games in these terms. Examples include Scrabble, Go Fish, Mario Kart, Monopoly, chess, poker, War, and Settlers of Catan. Next, students consider feedback loops. Instructors/speakers: Philip Tan, Jason BegyKeywords: complexity, determinism, randomness, uncertainty, strategy, games of skill, games of chance, playtesting, information theory, risk, game state, board games, probability, cybernetics, positive feedback loop, negative feedback loopTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA)

Subjects

complexity | complexity | determinism | determinism | randomness | randomness | uncertainty | uncertainty | strategy | strategy | games of skill | games of skill | games of chance | games of chance | playtesting | playtesting | information theory | information theory | risk | risk | game state | game state | board games | board games | probability | probability | cybernetics | cybernetics | positive feedback loop | positive feedback loop | negative feedback loop | negative feedback loop

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/courses/comparative-media-studies/cms-608-game-design-fall-2010/audio-lectures/rss.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

CMS.300 Introduction to Videogame Studies (MIT) CMS.300 Introduction to Videogame Studies (MIT)

Description

This course offers an introduction to the interdisciplinary study of videogames as texts through an examination of their cultural, educational, and social functions in contemporary settings. Students play and analyze videogames while reading current research and theory from a variety of sources in the sciences, social sciences, humanities, and industry. Assignments focus on game analysis in the context of the theories discussed in class. Class meetings involve regular reading, writing, and presentation exercises. No prior programming experience required. Students taking the graduate version complete additional assignments. This course offers an introduction to the interdisciplinary study of videogames as texts through an examination of their cultural, educational, and social functions in contemporary settings. Students play and analyze videogames while reading current research and theory from a variety of sources in the sciences, social sciences, humanities, and industry. Assignments focus on game analysis in the context of the theories discussed in class. Class meetings involve regular reading, writing, and presentation exercises. No prior programming experience required. Students taking the graduate version complete additional assignments.

Subjects

game design | game design | video games | video games | game analysis | game analysis | player. PC | player. PC | videogame | videogame | fiction | fiction | narrative | narrative

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.881 Game Theory and Political Theory (MIT) 17.881 Game Theory and Political Theory (MIT)

Description

Increasingly, political scientists are using game theory to analyze strategic interactions across many different settings. Each of the sub-fields, to differing degrees, has seen game theoretic concepts enter its vocabulary, and students entering the profession will need to understand the potential and limits of game theory. This course aims to give students an entry-level understanding of the basic concepts of game theory, and how these concepts have been applied to the study of political phenomena. Because an important component of game theory in political science and political economy is the analysis of substantive political phenomena, we will cover illustrative examples each week in combination with methodological developments. The political and economic phenomena that we will examine Increasingly, political scientists are using game theory to analyze strategic interactions across many different settings. Each of the sub-fields, to differing degrees, has seen game theoretic concepts enter its vocabulary, and students entering the profession will need to understand the potential and limits of game theory. This course aims to give students an entry-level understanding of the basic concepts of game theory, and how these concepts have been applied to the study of political phenomena. Because an important component of game theory in political science and political economy is the analysis of substantive political phenomena, we will cover illustrative examples each week in combination with methodological developments. The political and economic phenomena that we will examine

Subjects

game theory | game theory | game theoretic concepts | game theoretic concepts | games of complete information | games of complete information | games of incomplete information | games of incomplete information | political phenomena | political phenomena | legislative rules | legislative rules | nuclear deterrence | nuclear deterrence | electoral competition | electoral competition | imperfect markets | imperfect markets | probability | probability | calculus | calculus

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lecture 8: Strategy, Skill, and Chance, Part 1

Description

Description: Games contain various skill requirements, chance elements, and information availability, which guide strategy development. Changing the balance between these factors can create very different player experiences. Instructors/speakers: Philip Tan, Jason BegyKeywords: competition, strategy, game theory, roleplaying, vertigo, mimicry, ilinx, sports, alea, gameshows, randomness, games of skill, games of chance, luck, information theory, communication channel, noise, game state, card games, board games, determinism, probability, decision tree, utility, Nash equilibriumTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA)

Subjects

competition | strategy | game theory | roleplaying | vertigo | mimicry | ilinx | sports | alea | gameshows | randomness | games of skill | games of chance | luck | information theory | communication channel | noise | game state | card games | board games | determinism | probability | decision tree | utility | Nash equilibrium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/courses/comparative-media-studies-writing/cms-608-game-design-fall-2010/audio-lectures/rss.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lecture 25: Fiction and Stories in Games

Description

Description: Many games incorporate story elements, to drive the plot, set the scene, create engaging characters, etc. Some even use player actions to build an open-ended adventure. Clara Fernandez-Vara talks about how and why to use stories in games. Instructors/speakers: Philip Tan, Jason Begy, Clara Fernandez-Vara (Singapore-MIT GAMBIT Game Lab)Keywords: narrative, environmental storytelling, roleplaying, emergence, storybuilding, non-digital games, digital games, game state, stories, fiction, setting, characters, theme, progression, improvisation, micronarrative, premise, game event, game mechanic, ethics, board games, card gamesTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA)

Subjects

narrative | environmental storytelling | roleplaying | emergence | storybuilding | non-digital games | digital games | game state | stories | fiction | setting | characters | theme | progression | improvisation | micronarrative | premise | game event | game mechanic | ethics | board games | card games

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/courses/comparative-media-studies-writing/cms-608-game-design-fall-2010/audio-lectures/rss.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lecture 8: Strategy, Skill, and Chance, Part 1

Description

Description: Games contain various skill requirements, chance elements, and information availability, which guide strategy development. Changing the balance between these factors can create very different player experiences. Instructors/speakers: Philip Tan, Jason BegyKeywords: competition, strategy, game theory, roleplaying, vertigo, mimicry, ilinx, sports, alea, gameshows, randomness, games of skill, games of chance, luck, information theory, communication channel, noise, game state, card games, board games, determinism, probability, decision tree, utility, Nash equilibriumTranscript: PDF (English - US)Subtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA)

Subjects

competition | strategy | game theory | roleplaying | vertigo | mimicry | ilinx | sports | alea | gameshows | randomness | games of skill | games of chance | luck | information theory | communication channel | noise | game state | card games | board games | determinism | probability | decision tree | utility | Nash equilibrium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/courses/comparative-media-studies/cms-608-game-design-fall-2010/audio-lectures/rss.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lecture 25: Fiction and Stories in Games

Description

Description: Many games incorporate story elements, to drive the plot, set the scene, create engaging characters, etc. Some even use player actions to build an open-ended adventure. Clara Fernandez-Vara talks about how and why to use stories in games. Instructors/speakers: Philip Tan, Jason Begy, Clara Fernandez-Vara (Singapore-MIT GAMBIT Game Lab)Keywords: narrative, environmental storytelling, roleplaying, emergence, storybuilding, non-digital games, digital games, game state, stories, fiction, setting, characters, theme, progression, improvisation, micronarrative, premise, game event, game mechanic, ethics, board games, card gamesTranscript: PDF (English - US)Subtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA)

Subjects

narrative | environmental storytelling | roleplaying | emergence | storybuilding | non-digital games | digital games | game state | stories | fiction | setting | characters | theme | progression | improvisation | micronarrative | premise | game event | game mechanic | ethics | board games | card games

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/courses/comparative-media-studies/cms-608-game-design-fall-2010/audio-lectures/rss.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.268 The Mathematics in Toys and Games (MIT) SP.268 The Mathematics in Toys and Games (MIT)

Description

We will explore the mathematical strategies behind popular games, toys, and puzzles. Topics covered will combine basic fundamentals of game theory, probability, group theory, and elementary programming concepts. Each week will consist of a lecture and discussion followed by game play to implement the concepts learned in class. We will explore the mathematical strategies behind popular games, toys, and puzzles. Topics covered will combine basic fundamentals of game theory, probability, group theory, and elementary programming concepts. Each week will consist of a lecture and discussion followed by game play to implement the concepts learned in class.

Subjects

toys | toys | games | games | mathematics | mathematics | game theory | game theory | probability | probability | group theory | group theory | programming | programming | combinatorial game theory | combinatorial game theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

CMS.611J Creating Video Games (MIT) CMS.611J Creating Video Games (MIT)

Description

Includes audio/video content: AV faculty introductions, AV lectures. CMS.611J / 6.073 Creating Video Games is a class that introduces students to the complexities of working in small, multidisciplinary teams to develop video games. Students will learn creative design and production methods, working together in small teams to design, develop, and thoroughly test their own original digital games. Design iteration across all aspects of video game development (game design, audio design, visual aesthetics, fiction and programming) will be stressed. Students will also be required to focus test their games, and will need to support and challenge their game design decisions with appropriate focus testing and data analysis. Includes audio/video content: AV faculty introductions, AV lectures. CMS.611J / 6.073 Creating Video Games is a class that introduces students to the complexities of working in small, multidisciplinary teams to develop video games. Students will learn creative design and production methods, working together in small teams to design, develop, and thoroughly test their own original digital games. Design iteration across all aspects of video game development (game design, audio design, visual aesthetics, fiction and programming) will be stressed. Students will also be required to focus test their games, and will need to support and challenge their game design decisions with appropriate focus testing and data analysis.

Subjects

CMS.611 | CMS.611 | game | game | videogame | videogame | software | software | prototyping | prototyping | play | play | test | test | scrum | scrum | agile | agile | code | code | project management | project management | game design | game design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata