Searching for game theory : 86 results found | RSS Feed for this search

1 2 3

6.972 Game Theory and Mechanism Design (MIT) 6.972 Game Theory and Mechanism Design (MIT)

Description

This course is offered to graduates and is an introduction to fundamentals of game theory and mechanism design with motivations drawn from various applications including distributed control of wireline and wireless communication networks, incentive-compatible/dynamic resource allocation, and pricing. Emphasis is placed on the foundations of the theory, mathematical tools, as well as modeling and the equilibrium notions in different environments. Topics covered include: normal form games, learning in games, supermodular games, potential games, dynamic games, subgame perfect equilibrium, bargaining, repeated games, auctions, mechanism design, cooperative game theory, network and congestion games, and price of anarchy. This course is offered to graduates and is an introduction to fundamentals of game theory and mechanism design with motivations drawn from various applications including distributed control of wireline and wireless communication networks, incentive-compatible/dynamic resource allocation, and pricing. Emphasis is placed on the foundations of the theory, mathematical tools, as well as modeling and the equilibrium notions in different environments. Topics covered include: normal form games, learning in games, supermodular games, potential games, dynamic games, subgame perfect equilibrium, bargaining, repeated games, auctions, mechanism design, cooperative game theory, network and congestion games, and price of anarchy.

Subjects

game theory | game theory | mechanism design | mechanism design | mathematical tools | mathematical tools | normal form games | normal form games | existence and computation of equilibria | existence and computation of equilibria | supermodular games | supermodular games | potential games | potential games | subgame perfect equilibrium | subgame perfect equilibrium | dynamic games | dynamic games | bargaining | bargaining | repeated games | repeated games | games with incomplete/imperfect information | games with incomplete/imperfect information | auctions | auctions | cooperative game theory | cooperative game theory | network and congestion games | network and congestion games | pricing | pricing | price of anarchy | price of anarchy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.304 Undergraduate Seminar in Discrete Mathematics (MIT) 18.304 Undergraduate Seminar in Discrete Mathematics (MIT)

Description

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.

Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.268 The Mathematics in Toys and Games (MIT) SP.268 The Mathematics in Toys and Games (MIT)

Description

We will explore the mathematical strategies behind popular games, toys, and puzzles. Topics covered will combine basic fundamentals of game theory, probability, group theory, and elementary programming concepts. Each week will consist of a lecture and discussion followed by game play to implement the concepts learned in class. We will explore the mathematical strategies behind popular games, toys, and puzzles. Topics covered will combine basic fundamentals of game theory, probability, group theory, and elementary programming concepts. Each week will consist of a lecture and discussion followed by game play to implement the concepts learned in class.

Subjects

toys | toys | games | games | mathematics | mathematics | game theory | game theory | probability | probability | group theory | group theory | programming | programming | combinatorial game theory | combinatorial game theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.SP.268 The Mathematics in Toys and Games (MIT) ES.SP.268 The Mathematics in Toys and Games (MIT)

Description

We will explore the mathematical strategies behind popular games, toys, and puzzles. Topics covered will combine basic fundamentals of game theory, probability, group theory, and elementary programming concepts. Each week will consist of a lecture and discussion followed by game play to implement the concepts learned in class. We will explore the mathematical strategies behind popular games, toys, and puzzles. Topics covered will combine basic fundamentals of game theory, probability, group theory, and elementary programming concepts. Each week will consist of a lecture and discussion followed by game play to implement the concepts learned in class.

Subjects

toys | toys | games | games | mathematics | mathematics | game theory | game theory | probability | probability | group theory | group theory | programming | programming | combinatorial game theory | combinatorial game theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.268 The Mathematics in Toys and Games (MIT) ES.268 The Mathematics in Toys and Games (MIT)

Description

We will explore the mathematical strategies behind popular games, toys, and puzzles. Topics covered will combine basic fundamentals of game theory, probability, group theory, and elementary programming concepts. Each week will consist of a lecture and discussion followed by game play to implement the concepts learned in class. We will explore the mathematical strategies behind popular games, toys, and puzzles. Topics covered will combine basic fundamentals of game theory, probability, group theory, and elementary programming concepts. Each week will consist of a lecture and discussion followed by game play to implement the concepts learned in class.

Subjects

toys | toys | games | games | mathematics | mathematics | game theory | game theory | probability | probability | group theory | group theory | programming | programming | combinatorial game theory | combinatorial game theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ES.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.304 Undergraduate Seminar in Discrete Mathematics (MIT) 18.304 Undergraduate Seminar in Discrete Mathematics (MIT)

Description

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.

Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.123 Microeconomic Theory III (MIT) 14.123 Microeconomic Theory III (MIT)

Description

This half-semester course discusses decision theory and topics in game theory. We present models of individual decision-making under certainty and uncertainty. Topics include preference orderings, expected utility, risk, stochastic dominance, supermodularity, monotone comparative statics, background risk, game theory, rationalizability, iterated strict dominance multi-stage games, sequential equilibrium, trembling-hand perfection, stability, signaling games, theory of auctions, global games, repeated games, and correlation. This half-semester course discusses decision theory and topics in game theory. We present models of individual decision-making under certainty and uncertainty. Topics include preference orderings, expected utility, risk, stochastic dominance, supermodularity, monotone comparative statics, background risk, game theory, rationalizability, iterated strict dominance multi-stage games, sequential equilibrium, trembling-hand perfection, stability, signaling games, theory of auctions, global games, repeated games, and correlation.

Subjects

microeconomics | microeconomics | microeconomic theory | microeconomic theory | preference | preference | utility representation | utility representation | expected utility | expected utility | positive interpretation | positive interpretation | normative interpretation | normative interpretation | risk | risk | stochastic dominance | stochastic dominance | insurance | insurance | finance | finance | supermodularity | supermodularity | comparative statics | comparative statics | decision theory | decision theory | game theory | game theory | rationalizability | rationalizability | iterated strict dominance | iterated strict dominance | iterated conditional dominance | iterated conditional dominance | bargaining | bargaining | equilibrium | equilibrium | sequential equilibrium | sequential equilibrium | trembling-hand perfection | trembling-hand perfection | signaling games | signaling games | auctions | auctions | global games | global games | repeated games | repeated games | correlation | correlation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.126 Game Theory (MIT) 14.126 Game Theory (MIT)

Description

This course is a rigorous investigation of the evolutionary and epistemic foundations of solution concepts, such as rationalizability and Nash equilibrium. It covers classical topics, such as repeated games, bargaining, and supermodular games as well as new topics such as global games, heterogeneous priors, psychological games, and games without expected utility maximization. Applications are provided when available. This course is a rigorous investigation of the evolutionary and epistemic foundations of solution concepts, such as rationalizability and Nash equilibrium. It covers classical topics, such as repeated games, bargaining, and supermodular games as well as new topics such as global games, heterogeneous priors, psychological games, and games without expected utility maximization. Applications are provided when available.

Subjects

Economics | Economics | game theory | game theory | Nash Bargaining | Nash Bargaining | Price Theory | Price Theory | Sequential Bargaining | Sequential Bargaining

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.127 Computer Games and Simulations for Investigation and Education (MIT) 11.127 Computer Games and Simulations for Investigation and Education (MIT)

Description

This course will explore educational games and simulations and several computer modeling platforms. We will focus on design and research issues pertinent to learning through simulations and games. Throughout the course we will explore concepts in modeling, simulation, and gaming common to many domains, and investigate specific applications from a variety of fields ranging from weather to ecology to traffic management. This course will explore educational games and simulations and several computer modeling platforms. We will focus on design and research issues pertinent to learning through simulations and games. Throughout the course we will explore concepts in modeling, simulation, and gaming common to many domains, and investigate specific applications from a variety of fields ranging from weather to ecology to traffic management.

Subjects

simulation modeling | simulation modeling | computational technology | computational technology | SimCity | SimCity | edutainment | edutainment | "edutainment" software | "edutainment" software | Civilization | Civilization | pre-built models | pre-built models | gaming | gaming | game creation | game creation | game theory | game theory | design | design | simulation creation | simulation creation | software | software | programming | programming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.310 Principles of Applied Mathematics (MIT) 18.310 Principles of Applied Mathematics (MIT)

Description

Principles of Applied Mathematics is a study of illustrative topics in discrete applied mathematics including sorting algorithms, information theory, coding theory, secret codes, generating functions, linear programming, game theory. There is an emphasis on topics that have direct application in the real world. Principles of Applied Mathematics is a study of illustrative topics in discrete applied mathematics including sorting algorithms, information theory, coding theory, secret codes, generating functions, linear programming, game theory. There is an emphasis on topics that have direct application in the real world.

Subjects

sorting algorithms | sorting algorithms | information theory | information theory | coding theory | coding theory | secret codes | secret codes | generating functions | generating functions | linear programming | linear programming | game theory | game theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.310 Principles of Applied Mathematics (MIT) 18.310 Principles of Applied Mathematics (MIT)

Description

Principles of Applied Mathematics is a study of illustrative topics in discrete applied mathematics including sorting algorithms, information theory, coding theory, secret codes, generating functions, linear programming, game theory. There is an emphasis on topics that have direct application in the real world. Principles of Applied Mathematics is a study of illustrative topics in discrete applied mathematics including sorting algorithms, information theory, coding theory, secret codes, generating functions, linear programming, game theory. There is an emphasis on topics that have direct application in the real world.

Subjects

sorting algorithms | sorting algorithms | information theory | information theory | coding theory | coding theory | secret codes | secret codes | generating functions | generating functions | linear programming | linear programming | game theory | game theory | discrete applied mathematics | discrete applied mathematics | mathematical analysis | mathematical analysis | sorting data | sorting data | efficient data storage | efficient data storage | efficient data transmission | efficient data transmission | error correction | error correction | secrecy | secrecy | Fast Fourier Transform | Fast Fourier Transform | network-flow problems | network-flow problems | mathematical economics | mathematical economics | statistics | statistics | probability theory | probability theory | combinatorics | combinatorics | linear algebra | linear algebra

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.126 Game Theory (MIT) 14.126 Game Theory (MIT)

Description

Optimal decisions of economic agents depend on expectations of other agents' actions. Subject examines various models of equilibrium, which correspond to different ways that agents might make their decisions, and various kinds of games: static games, dynamic games, and games of incomplete information. Optimal decisions of economic agents depend on expectations of other agents' actions. Subject examines various models of equilibrium, which correspond to different ways that agents might make their decisions, and various kinds of games: static games, dynamic games, and games of incomplete information.

Subjects

game theory | game theory | Nash Bargaining | Nash Bargaining | Price Theory | Price Theory | Sequential Bargaining | Sequential Bargaining

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.12 Economic Applications of Game Theory (MIT) 14.12 Economic Applications of Game Theory (MIT)

Description

Game Theory is a misnomer for Multiperson Decision Theory, the analysis of situations in which payoffs to agents depend on the behavior of other agents. It involves the analysis of conflict, cooperation, and (tacit) communication. Game theory has applications in several fields, such as economics, politics, law, biology, and computer science. In this course, I will introduce the basic tools of game theoretic analysis. In the process, I will outline some of the many applications of game theory, primarily in economics and political science.Game Theory has emerged as a branch of mathematics and is still quite mathematical. Our emphasis will be on the conceptual analysis, keeping the level of math to a minimum, especially at a level that should be quite acceptable to the average MIT student. Ye Game Theory is a misnomer for Multiperson Decision Theory, the analysis of situations in which payoffs to agents depend on the behavior of other agents. It involves the analysis of conflict, cooperation, and (tacit) communication. Game theory has applications in several fields, such as economics, politics, law, biology, and computer science. In this course, I will introduce the basic tools of game theoretic analysis. In the process, I will outline some of the many applications of game theory, primarily in economics and political science.Game Theory has emerged as a branch of mathematics and is still quite mathematical. Our emphasis will be on the conceptual analysis, keeping the level of math to a minimum, especially at a level that should be quite acceptable to the average MIT student. Ye

Subjects

game theory | game theory | multiperson decision theory | multiperson decision theory | conflict | conflict | cooperation | cooperation | communication | communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.881 Game Theory and Political Theory (MIT) 17.881 Game Theory and Political Theory (MIT)

Description

Increasingly, political scientists are using game theory to analyze strategic interactions across many different settings. Each of the sub-fields, to differing degrees, has seen game theoretic concepts enter its vocabulary, and students entering the profession will need to understand the potential and limits of game theory. This course aims to give students an entry-level understanding of the basic concepts of game theory, and how these concepts have been applied to the study of political phenomena. Because an important component of game theory in political science and political economy is the analysis of substantive political phenomena, we will cover illustrative examples each week in combination with methodological developments. The political and economic phenomena that we will examine Increasingly, political scientists are using game theory to analyze strategic interactions across many different settings. Each of the sub-fields, to differing degrees, has seen game theoretic concepts enter its vocabulary, and students entering the profession will need to understand the potential and limits of game theory. This course aims to give students an entry-level understanding of the basic concepts of game theory, and how these concepts have been applied to the study of political phenomena. Because an important component of game theory in political science and political economy is the analysis of substantive political phenomena, we will cover illustrative examples each week in combination with methodological developments. The political and economic phenomena that we will examine

Subjects

game theory | game theory | game theoretic concepts | game theoretic concepts | games of complete information | games of complete information | games of incomplete information | games of incomplete information | political phenomena | political phenomena | legislative rules | legislative rules | nuclear deterrence | nuclear deterrence | electoral competition | electoral competition | imperfect markets | imperfect markets | probability | probability | calculus | calculus

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.01SC Principles of Microeconomics (MIT) 14.01SC Principles of Microeconomics (MIT)

Description

Includes audio/video content: AV lectures. 14.01 Principles of Microeconomics is an introductory undergraduate course that teaches the fundamentals of microeconomics. This course introduces microeconomic concepts and analysis, supply and demand analysis, theories of the firm and individual behavior, competition and monopoly, and welfare economics. Students will also be introduced to the use of microeconomic applications to address problems in current economic policy throughout the semester. This course is a core subject in MIT's undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmen Includes audio/video content: AV lectures. 14.01 Principles of Microeconomics is an introductory undergraduate course that teaches the fundamentals of microeconomics. This course introduces microeconomic concepts and analysis, supply and demand analysis, theories of the firm and individual behavior, competition and monopoly, and welfare economics. Students will also be introduced to the use of microeconomic applications to address problems in current economic policy throughout the semester. This course is a core subject in MIT's undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmen

Subjects

Microeconomics | Microeconomics | prices | prices | normative economics | normative economics | positive economics | positive economics | microeconomic applications | microeconomic applications | supply | supply | demand | demand | equilibrium | equilibrium | demand shift | demand shift | supply shift | supply shift | government interference | government interference | elasticity | elasticity | revenue | revenue | empirical economics | empirical economics | consumer theory | consumer theory | preference assumptions | preference assumptions | indifference curves | indifference curves | utility functions | utility functions | marginal utility | marginal utility | budget constraints | budget constraints | marginal rate of transformation | marginal rate of transformation | opportunity cost | opportunity cost | constrained utility maximization | constrained utility maximization | corner solutions | corner solutions | Engel curves | Engel curves | income effect | income effect | substitution effect | substitution effect | Giffin good | Giffin good | labor economics | labor economics | child labor | child labor | producer theory | producer theory | variable inputs | variable inputs | fixed inputs | fixed inputs | firm production functions | firm production functions | marginal rate of technical substitution | marginal rate of technical substitution | returns to scale | returns to scale | productivity | productivity | perfect competition | perfect competition | search theory | search theory | residual demand | residual demand | shutdown decisions | shutdown decisions | market equilibrium | market equilibrium | agency problem | agency problem | welfare economics | welfare economics | consumer surplus | consumer surplus | producer surplus | producer surplus | dead weight loss | dead weight loss | monopoly | monopoly | oligopoly | oligopoly | market power | market power | price discrimination | price discrimination | price regulation | price regulation | antitrust policy | antitrust policy | mergers | mergers | cartel | cartel | game theory | game theory | Nash equilibrium | Nash equilibrium | Cournot model | Cournot model | duopoly | duopoly | non-cooperative competition | non-cooperative competition | Bertrand competition | Bertrand competition | factor markets | factor markets | international trade | international trade | uncertainty | uncertainty | capital markets | capital markets | intertemporal choice | intertemporal choice | real interest rate | real interest rate | compounding | compounding | inflation | inflation | investment | investment | discount rate | discount rate | net present value | net present value | income distribution | income distribution | social welfare function | social welfare function | Utilitarianism | Utilitarianism | Raulsian criteria | Raulsian criteria | Nozickian | Nozickian | commodity egalitarianism | commodity egalitarianism | isowelfare curves | isowelfare curves | social insurance | social insurance | social security | social security | moral hazard | moral hazard | taxation | taxation | EITC | EITC | healthcare | healthcare | PPACA | PPACA

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.464 E-Commerce and the Internet in Real Estate and Construction (MIT) 1.464 E-Commerce and the Internet in Real Estate and Construction (MIT)

Description

1.464 examines the long term effects of information technology on business strategy in the real estate and construction industry. Considerations include: supply chain, allocation of risk, impact on contract obligations and security, trends toward consolidation, and the convergence of information transparency and personal effectiveness. Resources are drawn from the world of dot.com entrepreneurship and "old economy" responses. 1.464 examines the long term effects of information technology on business strategy in the real estate and construction industry. Considerations include: supply chain, allocation of risk, impact on contract obligations and security, trends toward consolidation, and the convergence of information transparency and personal effectiveness. Resources are drawn from the world of dot.com entrepreneurship and "old economy" responses.

Subjects

e-commerce | e-commerce | Internet | Internet | real estate | real estate | construction | construction | information technology | information technology | business strategy | business strategy | supply chain | supply chain | risk allocation | risk allocation | contract obligations | contract obligations | consolidation | consolidation | information transparency | information transparency | case method | case method | case study | case study | industry value system | industry value system | optimization | optimization | business models | business models | incentives | incentives | game theory | game theory | strategic managment | strategic managment | knowledge management | knowledge management

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.254 Game Theory with Engineering Applications (MIT) 6.254 Game Theory with Engineering Applications (MIT)

Description

This course is an introduction to the fundamentals of game theory and mechanism design. Motivations are drawn from engineered/networked systems (including distributed control of wireline and wireless communication networks, incentive-compatible/dynamic resource allocation, multi-agent systems, pricing and investment decisions in the Internet), and social models (including social and economic networks). The course emphasizes theoretical foundations, mathematical tools, modeling, and equilibrium notions in different environments. This course is an introduction to the fundamentals of game theory and mechanism design. Motivations are drawn from engineered/networked systems (including distributed control of wireline and wireless communication networks, incentive-compatible/dynamic resource allocation, multi-agent systems, pricing and investment decisions in the Internet), and social models (including social and economic networks). The course emphasizes theoretical foundations, mathematical tools, modeling, and equilibrium notions in different environments.

Subjects

game theory | game theory | strategic form games | strategic form games | learning | evolution | and computation | learning | evolution | and computation | extensive games with perfect information | extensive games with perfect information | repeated games | repeated games | games with incomplete information | games with incomplete information | mechanism design | mechanism design | network effects | network effects | games over networks | games over networks

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.12 Economic Applications of Game Theory (MIT) 14.12 Economic Applications of Game Theory (MIT)

Description

Game Theory, also known as Multiperson Decision Theory, is the analysis of situations in which the payoff of a decision maker depends not only on his own actions but also on those of others. Game Theory has applications in several fi…elds, such as economics, politics, law, biology, and computer science. In this course, I will introduce the basic tools of game theoretic analysis. In the process, I will outline some of the many applications of Game Theory, primarily in economics. Game Theory, also known as Multiperson Decision Theory, is the analysis of situations in which the payoff of a decision maker depends not only on his own actions but also on those of others. Game Theory has applications in several fi…elds, such as economics, politics, law, biology, and computer science. In this course, I will introduce the basic tools of game theoretic analysis. In the process, I will outline some of the many applications of Game Theory, primarily in economics.

Subjects

game theory | game theory | economics | economics | multiperson decision theory | multiperson decision theory | payoff | payoff | games | games | backward induction | backward induction | subgame perfection | subgame perfection | implicit cartels | implicit cartels | dynamic games | dynamic games

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.123 Microeconomic Theory III (MIT) 14.123 Microeconomic Theory III (MIT)

Description

This is a half-semester course which covers the topics in Microeconomic Theory that everybody with a Ph.D. from MIT Economics Department should know but that have not yet been covered in the Micro sequence. Hence, it covers several unrelated topics. The topics come from three general areas: Decision Theory, Game Theory, and Behaviorla Economics.  I will try my best to put them in a coherent narrative, but there will be inherent jumps from topic to topic. This is a half-semester course which covers the topics in Microeconomic Theory that everybody with a Ph.D. from MIT Economics Department should know but that have not yet been covered in the Micro sequence. Hence, it covers several unrelated topics. The topics come from three general areas: Decision Theory, Game Theory, and Behaviorla Economics.  I will try my best to put them in a coherent narrative, but there will be inherent jumps from topic to topic.

Subjects

microeconomic theory | microeconomic theory | reputation formation | reputation formation | rationalizability | rationalizability | game theory | game theory | behavioral economics | behavioral economics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.15J Networks (MIT) 14.15J Networks (MIT)

Description

Networks are ubiquitous in our modern society. The World Wide Web that links us to and enables information flows with the rest of the world is the most visible example. It is, however, only one of many networks within which we are situated. Our social life is organized around networks of friends and colleagues. These networks determine our information, influence our opinions, and shape our political attitudes. They also link us, often through important but weak ties, to everybody else in the United States and in the world. Economic and financial markets also look much more like networks than anonymous marketplaces. Firms interact with the same suppliers and customers and use Web-like supply chains. Financial linkages, both among banks and between consumers, companies and banks, also form a Networks are ubiquitous in our modern society. The World Wide Web that links us to and enables information flows with the rest of the world is the most visible example. It is, however, only one of many networks within which we are situated. Our social life is organized around networks of friends and colleagues. These networks determine our information, influence our opinions, and shape our political attitudes. They also link us, often through important but weak ties, to everybody else in the United States and in the world. Economic and financial markets also look much more like networks than anonymous marketplaces. Firms interact with the same suppliers and customers and use Web-like supply chains. Financial linkages, both among banks and between consumers, companies and banks, also form a

Subjects

networks | networks | crowds | crowds | markets | markets | highly connected world | highly connected world | social networks | social networks | economic networks | economic networks | power networks | power networks | communication networks | communication networks | game theory | game theory | graph theory | graph theory | branching processes | branching processes | random graph models | random graph models | rich get richer phenomena | rich get richer phenomena | power laws | power laws | small worlds | small worlds | Erd?s-Renyi graphs | Erd?s-Renyi graphs | degree distributions | degree distributions | phase transitions | phase transitions | connectedness | connectedness | and giant component | and giant component | link analysis | link analysis | web search | web search | navigation | navigation | decentralized search | decentralized search | preferential attachment | preferential attachment | epidemics | epidemics | diffusion through networks | diffusion through networks | SIR | SIR | (susceptible | (susceptible | infected | infected | removed) | removed) | SIS | SIS | susceptible) | susceptible) | strategies | strategies | payoffs | payoffs | normal forms | normal forms | Nash equilibrium | Nash equilibrium | traffic networks | traffic networks | negative externalities | negative externalities | Braess' paradox | Braess' paradox | potential games | potential games | myopic behavior | myopic behavior | fictitious play | fictitious play | repeated games | repeated games | prisoner's dilemma | prisoner's dilemma | cooperation | cooperation | perfect information | perfect information | imperfect information | imperfect information | positive externalities | positive externalities | strategic complements | strategic complements | path dependence | path dependence | diffusion of innovation | diffusion of innovation | contagion pheonomena | contagion pheonomena | Bayes's rule | Bayes's rule | Bayesian Nash equilibrium | Bayesian Nash equilibrium | first price auctions | first price auctions | second price auctions | second price auctions | social learning | social learning | Bayesian learning | Bayesian learning | copying | copying | herding | herding | herd behavior | herd behavior | informational cascades | informational cascades | decisions | decisions | social choice | social choice | Condorcet jury theorem | Condorcet jury theorem | political economy | political economy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.147 Topics in Game Theory (MIT) 14.147 Topics in Game Theory (MIT)

Description

This course is an advanced topics course on market and mechanism design. We will study existing or new market institutions, understand their properties, and think about whether they can be re-engineered or improved. Topics discussed include mechanism design, auction theory, one-sided matching in house allocation, two-sided matching, stochastic matching mechanisms, student assignment, and school choice. This course is an advanced topics course on market and mechanism design. We will study existing or new market institutions, understand their properties, and think about whether they can be re-engineered or improved. Topics discussed include mechanism design, auction theory, one-sided matching in house allocation, two-sided matching, stochastic matching mechanisms, student assignment, and school choice.

Subjects

game theory | game theory | mechanism design | mechanism design | auction theory | auction theory | one-sided matching | one-sided matching | house allocation | house allocation | market problems | market problems | two-sided matching | two-sided matching | stability | stability | many-to-one | many-to-one | one-to-one | one-to-one | small cores | small cores | large markets | large markets | stochastic matching mechanisms | stochastic matching mechanisms | student assignment | student assignment | school choice | school choice | resale markets | resale markets | dynamics | dynamics | simplicity | simplicity | robustness | robustness | limited rationality | limited rationality | message spaces | message spaces | sharing risk | sharing risk | decentralized exchanges | decentralized exchanges | over-the-counter exchanges | over-the-counter exchanges

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.01 Principles of Microeconomics (MIT) 14.01 Principles of Microeconomics (MIT)

Description

This introductory course teaches the fundamentals of microeconomics. Topics include consumer theory, producer theory, the behavior of firms, market equilibrium, monopoly, and the role of the government in the economy. 14.01 is a Humanities, Arts, and Social Sciences (HASS) elective and is offered both terms. This course is a core subject in MIT's undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges. This introductory course teaches the fundamentals of microeconomics. Topics include consumer theory, producer theory, the behavior of firms, market equilibrium, monopoly, and the role of the government in the economy. 14.01 is a Humanities, Arts, and Social Sciences (HASS) elective and is offered both terms. This course is a core subject in MIT's undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.

Subjects

market | market | optimization | optimization | allocation | allocation | economic measurement | economic measurement | analysis | analysis | microeconomics | microeconomics | demand | demand | supply | supply | equilibrium | equilibrium | general equilibrium | general equilibrium | government interventions | government interventions | price elasticity of demand | price elasticity of demand | income elasticity of demand | income elasticity of demand | cross price elasticity of demand | cross price elasticity of demand | price elasticity of supply | price elasticity of supply | consumer behavior | consumer behavior | consumer preference | consumer preference | utility functions | utility functions | marginal rate of substitution | marginal rate of substitution | budget constraints | budget constraints | interior solutions | interior solutions | corner solutions | corner solutions | Engle curves | Engle curves | individual demand | individual demand | market demand | market demand | revealed preferences | revealed preferences | substitution effect | substitution effect | income effect | income effect | Giffen goods | Giffen goods | consumer surplus | consumer surplus | Irish potato famine | Irish potato famine | network externalities | network externalities | uncertainty | uncertainty | preference toward risk | preference toward risk | risk premium | risk premium | indifference curves | indifference curves | diversification | diversification | insurance | insurance | producer theory | producer theory | production functions | production functions | short run | short run | long run | long run | returns to scale | returns to scale | cost functions | cost functions | economies of scale | economies of scale | economies of scope | economies of scope | learning | learning | profit maximization | profit maximization | producer surplus | producer surplus | agricultural price support | agricultural price support | tax | tax | subsidy | subsidy | exchange economy | exchange economy | contract curves | contract curves | utility possibilities frontier | utility possibilities frontier | Edgeworth Box | Edgeworth Box | production possibilities frontier | production possibilities frontier | efficiency | efficiency | monopoly | monopoly | multiplant firm | multiplant firm | social cost | social cost | price regulation | price regulation | monopsony | monopsony | price discrimination | price discrimination | peak-load pricing | peak-load pricing | two-part tariffs | two-part tariffs | bundling | bundling | monopolistic competition | monopolistic competition | game theory | game theory | oligopoly | oligopoly | Cournot | Cournot | Stackelberg | Stackelberg | Bertrand | Bertrand | Prisoner's Dilemma | Prisoner's Dilemma

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.147 Topics in Game Theory (MIT) 14.147 Topics in Game Theory (MIT)

Description

This course/workshop aims to provide an invigorating intellectual environment for graduate students and junior faculty who are interested in economic theory. We will discuss research ideas and explore topics in game theory and more broadly in economic theory. This course/workshop aims to provide an invigorating intellectual environment for graduate students and junior faculty who are interested in economic theory. We will discuss research ideas and explore topics in game theory and more broadly in economic theory.

Subjects

Economics | Economics | game theory | game theory | bargaining | bargaining | information | information | asymmetric | asymmetric | empirical | empirical | experimental | experimental | studies | studies | heterogeneous beliefs | heterogeneous beliefs | uncertainty | uncertainty | unawareness | unawareness

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.13 Economics and Psychology (MIT) 14.13 Economics and Psychology (MIT)

Description

This course integrates psychological insights into economic models of behavior. It discusses the limitations of standard economic models and surveys the ways in which psychological experiments have been used to learn about preferences, cognition, and behavior. Topics include: trust, vengeance, fairness, impatience, impulsivity, bounded rationality, learning, reinforcement, classical conditioning, loss-aversion, over-confidence, self-serving biases, cognitive dissonance, altruism, subjective well-being, and hedonic adaptation. Economic concepts such as equilibrium, rational choice, utility maximization, Bayesian beliefs, game theory, and behavior under uncertainty are discussed in light of these phenomena. This course integrates psychological insights into economic models of behavior. It discusses the limitations of standard economic models and surveys the ways in which psychological experiments have been used to learn about preferences, cognition, and behavior. Topics include: trust, vengeance, fairness, impatience, impulsivity, bounded rationality, learning, reinforcement, classical conditioning, loss-aversion, over-confidence, self-serving biases, cognitive dissonance, altruism, subjective well-being, and hedonic adaptation. Economic concepts such as equilibrium, rational choice, utility maximization, Bayesian beliefs, game theory, and behavior under uncertainty are discussed in light of these phenomena.

Subjects

behavioral economics | behavioral economics | finance | finance | psychology | psychology | prospect | prospect | prospect theory | prospect theory | bias | bias | probabilistic judgment | probabilistic judgment | self-control | self-control | mental accounting | mental accounting | fairness | fairness | altruism | altruism | public goods | public goods | market anomalies | market anomalies | market theories | market theories | economics | economics | behavior | behavior | preferences | preferences | cognition | cognition | trust | trust | vengence | vengence | impatience | impatience | impulsivity | impulsivity | bounded rationality | bounded rationality | learning | learning | reinforcement | reinforcement | classical conditioning | classical conditioning | loss-aversion | loss-aversion | over-confidence | over-confidence | self-serving biases | self-serving biases | cognitive dissonance | cognitive dissonance | subjective well-being | subjective well-being | hedonic adaptation | hedonic adaptation | equilibrium | equilibrium | rational choice | rational choice | utility maximization | utility maximization | Bayesian beliefs | Bayesian beliefs | game theory | game theory | neuroeconomics | neuroeconomics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.20 Industrial Organization and Public Policy (MIT) 14.20 Industrial Organization and Public Policy (MIT)

Description

This is a course in industrial organization, the study of firms in markets. Industrial organization focuses on firm behavior in imperfectly competitive markets, which appear to be far more common than the perfectly competitive markets that were the focus of your basic microeconomics course. This field analyzes the acquisition and use of market power by firms, strategic interactions among firms, and the role of government competition policy. We will approach this subject from both theoretical and applied perspectives. This is a course in industrial organization, the study of firms in markets. Industrial organization focuses on firm behavior in imperfectly competitive markets, which appear to be far more common than the perfectly competitive markets that were the focus of your basic microeconomics course. This field analyzes the acquisition and use of market power by firms, strategic interactions among firms, and the role of government competition policy. We will approach this subject from both theoretical and applied perspectives.

Subjects

government | government | market power | market power | strategy | strategy | economics | economics | game theory | game theory | monopoly | monopoly | oligopoly | oligopoly | pricing | pricing | spatial model | spatial model | public policy | public policy | competitive markets | competitive markets | firm behavior | firm behavior | industrial organization | industrial organization | imperfectly competitive markets | imperfectly competitive markets | firm acquisition | firm acquisition | government competition policy | government competition policy | market power firms | market power firms | dynamic games | dynamic games

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata