Searching for gene : 2434 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Rene Francillon Collection Image Rene Francillon Collection Image

Description

Subjects

f16 | f16 | ge | ge | viper | viper | usaf | usaf | gd | gd | usairforce | usairforce | generalelectric | generalelectric | aam | aam | ecm | ecm | lockheedmartin | lockheedmartin | unitedstatesairforce | unitedstatesairforce | generaldynamics | generaldynamics | missilelaunch | missilelaunch | f16fightingfalcon | f16fightingfalcon | fightingfalcon | fightingfalcon | f16c | f16c | f110 | f110 | amraam | amraam | aim120 | aim120 | radarjammer | radarjammer | 77fs | 77fs | lockheedmartinf16 | lockheedmartinf16 | generaldynamicsf16 | generaldynamicsf16 | lockheedmartinf16fightingfalcon | lockheedmartinf16fightingfalcon | electroniccountermeasures | electroniccountermeasures | lockmart | lockmart | f16cfightingfalcon | f16cfightingfalcon | generaldynamicsf16c | generaldynamicsf16c | block50 | block50 | generaldynamicsf16fightingfalcon | generaldynamicsf16fightingfalcon | analq184 | analq184 | airtoairmissile | airtoairmissile | generaldynamicsf16cfightingfalcon | generaldynamicsf16cfightingfalcon | lockheedmartinf16c | lockheedmartinf16c | gef110 | gef110 | ecmpod | ecmpod | 77thfightersquadron | 77thfightersquadron | aim120amraam | aim120amraam | lockheedmartinf16cfightingfalcon | lockheedmartinf16cfightingfalcon | generalelectricf110 | generalelectricf110 | f16cblock50 | f16cblock50 | 900815 | 900815 | f110ge129 | f110ge129 | 77thfs | 77thfs | block50b | block50b | generalelectricf110ge129 | generalelectricf110ge129 | gef110ge129 | gef110ge129 | f16cblock50b | f16cblock50b

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.27 Principles of Human Disease (MIT) 7.27 Principles of Human Disease (MIT)

Description

This course covers current understanding of, and modern approaches to human disease, emphasizing the molecular and cellular basis of both genetic disease and cancer. Topics include: The Genetics of Simple and Complex Traits; Karyotypic Analysis and Positional Cloning; Genetic Diagnosis; The Roles of Oncogenes and Tumor Suppressors in Tumor Initiation, Progression, and Treatment; The Interaction between Genetics and Environment; Animal Models of Human Disease; Cancer; and Conventional and Gene Therapy Treatment Strategies. This course covers current understanding of, and modern approaches to human disease, emphasizing the molecular and cellular basis of both genetic disease and cancer. Topics include: The Genetics of Simple and Complex Traits; Karyotypic Analysis and Positional Cloning; Genetic Diagnosis; The Roles of Oncogenes and Tumor Suppressors in Tumor Initiation, Progression, and Treatment; The Interaction between Genetics and Environment; Animal Models of Human Disease; Cancer; and Conventional and Gene Therapy Treatment Strategies.

Subjects

human disease | human disease | molecular basis of genetic disease | molecular basis of genetic disease | molecular basis of cancer | molecular basis of cancer | cellular basis of genetic disease | cellular basis of genetic disease | cellular basis of cancer | cellular basis of cancer | genetics of simple and complex traits | genetics of simple and complex traits | karyotypic analysis | karyotypic analysis | positional cloning | positional cloning | genetic diagnosis | genetic diagnosis | roles of oncogenes | roles of oncogenes | tumor suppressors | tumor suppressors | tumor initiation | tumor initiation | tumor progression | tumor progression | tumor treatment | tumor treatment | interaction between genetics and environment | interaction between genetics and environment | animal models of human disease | animal models of human disease | cancer | cancer | conventional treatment strategies | conventional treatment strategies | gene therapy treatment strategies | gene therapy treatment strategies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 RNA Interference: A New Tool for Genetic Analysis and Therapeutics (MIT) 7.344 RNA Interference: A New Tool for Genetic Analysis and Therapeutics (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has a This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has a

Subjects

RNA interference | RNA interference | RNAi | RNAi | RNA | RNA | genetic analysis | genetic analysis | gene therapy | gene therapy | gene products | gene products | gene silencing | gene silencing | gene expression | gene expression | human disease models | human disease models | mRNA | mRNA | genetic interference | genetic interference | short interfering RNA | short interfering RNA | siRNAs | siRNAs | expression vectors | expression vectors | RNA sequences | RNA sequences | nucleotide fragments | nucleotide fragments | microRNA | microRNA | mRNA degradation | mRNA degradation | transgenic mice | transgenic mice | lentivirus | lentivirus | knock-down animals | knock-down animals | tissue specificity | tissue specificity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT) 7.13 Experimental Microbial Genetics (MIT)

Description

Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology. Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology.

Subjects

microbiology | microbiology | genetics | genetics | rhodococcus | rhodococcus | bacteria | bacteria | genes | genes | plasmid manipulation | plasmid manipulation | mutagenesis | mutagenesis | PCR | PCR | DNA sequencing | DNA sequencing | enzyme assays | enzyme assays | gene expression | gene expression | molecular genetics | molecular genetics | Gram-positive | Gram-positive | gram-negative | gram-negative | bioconversion processes | bioconversion processes | synthesis | synthesis | precursors | precursors | metabolites | metabolites | genetic complementation | genetic complementation | laboratory | laboratory | lab | lab

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Readme file for Introduction to Artificial Intelligence

Description

This readme file contains details of links to all the Introduction to Artificial Intelligence module's material held on Jorum and information about the module as well.

Subjects

ukoer | evolutionary algorithm lecture | algorithm tutorial | genetic algorithm lecture | genetic algorithm example | evolutionary computation tutorial | artificial intelligence lecture | artificial intelligence tutorial | random processes reading material | semantic web reading material | neural networks video | evolutionary computation test | artificial intelligence test | knowledge representation test | neural networks test | evolutionary algorithm | genetic computation | genetic programming | evolutionary computation | artificial intelligence | introduction to artificial intelligence | search | problem solving | revision | knowledge representation | semantic web | neural network | neural networks | artificial neural networks | swarm intelligence | collective intelligence | robot societies | genetic computation lecture | genetic programming lecture | evolutionary computation lecture | introduction to artificial intelligence lecture | evolutionary algorithm tutorial | genetic computation tutorial | genetic programming tutorial | introduction to artificial intelligence tutorial | evolutionary algorithm example | genetic computation example | genetic programming example | evolutionary computation example | artificial intelligence example | introduction to artificial intelligence example | search lecture | problem solving lecture | search tutorial | problem solving tutorial | search example | problem solving example | revision reading material | search reading material | artificial intelligence reading material | introduction to artificial intelligence reading material | revision lecture | knowledge representation lecture | semantic web lecture | knowledge representation practical | semantic web practical | artificial intelligence practical | introduction to artificial intelligence practical | knowledge representation reading material | knowledge representation notes | semantic web notes | artificial intelligence notes | introduction to artificial intelligence notes | neural network lecture | neural networks lecture | artificial neural networks lecture | neural network reading material | neural networks reading material | artificial neural networks reading material | neural network practical | neural networks practical | artificial neural networks practical | neural network viewing material | neural networks viewing material | artificial neural networks viewing material | artificial intelligence viewing material | introduction to artificial intelligence viewing material | swarm intelligence lecture | collective intelligence lecture | robot societies lecture | swarm intelligence tutorial | collective intelligence tutorial | robot societies tutorial | evolutionary algorithm test | genetic computation test | genetic programming test | introduction to artificial intelligence test | search test | problem solving test | semantic web test | neural network test | artificial neural networks test | g700 | ai | g700 lecture | ai lecture | g700 tutorial | ai tutorial | g700 example | ai example | g700 reading material | ai reading material | g700 practical | ai practical | g700 notes | ai notes | g700 viewing material | ai viewing material | g700 test | ai test | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.591J Systems Biology (MIT) 8.591J Systems Biology (MIT)

Description

This course introduces the mathematical modeling techniques needed to address key questions in modern biology. An overview of modeling techniques in molecular biology and genetics, cell biology and developmental biology is covered. Key experiments that validate mathematical models are also discussed, as well as molecular, cellular, and developmental systems biology, bacterial chemotaxis, genetic oscillators, control theory and genetic networks, and gradient sensing systems. Additional specific topics include: constructing and modeling of genetic networks, lambda phage as a genetic switch, synthetic genetic switches, circadian rhythms, reaction diffusion equations, local activation and global inhibition models, center finding networks, general pattern formation models, modeling cell-cell co This course introduces the mathematical modeling techniques needed to address key questions in modern biology. An overview of modeling techniques in molecular biology and genetics, cell biology and developmental biology is covered. Key experiments that validate mathematical models are also discussed, as well as molecular, cellular, and developmental systems biology, bacterial chemotaxis, genetic oscillators, control theory and genetic networks, and gradient sensing systems. Additional specific topics include: constructing and modeling of genetic networks, lambda phage as a genetic switch, synthetic genetic switches, circadian rhythms, reaction diffusion equations, local activation and global inhibition models, center finding networks, general pattern formation models, modeling cell-cell co

Subjects

molecular systems biology | molecular systems biology | constructing and modeling of genetic networks | constructing and modeling of genetic networks | control theory and genetic networks | control theory and genetic networks | ambda phage as a genetic switch | ambda phage as a genetic switch | synthetic genetic switches | synthetic genetic switches | bacterial chemotaxis | bacterial chemotaxis | genetic oscillators | genetic oscillators | circadian rhythms | circadian rhythms | cellular systems biology | cellular systems biology | reaction diffusion equations | reaction diffusion equations | local activation and global inhibition models | local activation and global inhibition models | gradient sensing systems | gradient sensing systems | center finding networks | center finding networks | developmental systems biology | developmental systems biology | general pattern formation models | general pattern formation models | modeling cell-cell communication | modeling cell-cell communication | quorum sensing | quorum sensing | models for Drosophilia development | models for Drosophilia development | 8.591 | 8.591 | 7.81 | 7.81

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT) 7.13 Experimental Microbial Genetics (MIT)

Description

Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology. Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology.

Subjects

microbiology | microbiology | genetics | genetics | rhodococcus | rhodococcus | bacteria | bacteria | genes | genes | plasmid manipulation | plasmid manipulation | mutagenesis | mutagenesis | PCR | PCR | DNA sequencing | DNA sequencing | enzyme assays | enzyme assays | gene expression | gene expression | molecular genetics | molecular genetics | Gram-positive | Gram-positive | gram-negative | gram-negative | bioconversion processes | bioconversion processes | synthesis | synthesis | precursors | precursors | metabolites | metabolites | genetic complementation | genetic complementation | laboratory | laboratory | lab | lab

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.592 Statistical Physics in Biology (MIT) 8.592 Statistical Physics in Biology (MIT)

Description

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; Considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.Technical RequirementsAny number of biological sequence comparison software tools can be used to import the .fna files found on this course site. Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; Considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.Technical RequirementsAny number of biological sequence comparison software tools can be used to import the .fna files found on this course site.

Subjects

Bioinformatics | Bioinformatics | DNA | DNA | gene finding | gene finding | sequence comparison | sequence comparison | phylogenetic trees | phylogenetic trees | biopolymers | biopolymers | DNA double helix | DNA double helix | secondary structure of RNA | secondary structure of RNA | protein folding | protein folding | protein motors | membranes | protein motors | membranes | cellular networks | cellular networks | neural networks | neural networks | evolution | evolution | statistical physics | statistical physics | molecular biology | molecular biology | deoxyribonucleic acid | deoxyribonucleic acid | genes | genes | genetics | genetics | gene sequencing | gene sequencing | phylogenetics | phylogenetics | double helix | double helix | RNA | RNA | ribonucleic acid | ribonucleic acid | force | force | motion | motion | packaging | packaging | protein motors | protein motors | membranes | membranes | biochemistry | biochemistry | genome | genome | optimization | optimization | partitioning | partitioning | pattern recognition | pattern recognition | collective behavior | collective behavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.161 Molecular Biology and Genetics in Modern Medicine (MIT) HST.161 Molecular Biology and Genetics in Modern Medicine (MIT)

Description

This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics. This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics.

Subjects

Genetics | Genetics | genes | genes | genetic disorders | genetic disorders | inborn error | inborn error | muscular dystrophy | muscular dystrophy | PKU | PKU | phenylketoneuria | phenylketoneuria | cancer | cancer | tumors | tumors | gene therapy | gene therapy | disease | disease | birth defects | birth defects | chromosomes | chromosomes | leukemia | leukemia | RNAi | RNAi | hemophilia | hemophilia | thalassemia | thalassemia | deafness | deafness | mutations | mutations | hypertrophic cardiomyopathy | hypertrophic cardiomyopathy | epigenetics | epigenetics | rett syndrome | rett syndrome | prenatal diagnosis | prenatal diagnosis | LOD scores | LOD scores | gene linkage | gene linkage | mitochondrial disorders | mitochondrial disorders | degenerative disorders | degenerative disorders | complex traits | complex traits | Mendelian inheritance | Mendelian inheritance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Readme file for Introduction to OO Programming in Java

Description

This readme file contains details of links to all the Introduction to OO Programming in Java module's material held on Jorum and information about the module as well.

Subjects

ukoer | programming task guide | programming lecture | programming reading material | software design reading material | classes guide | libraries lecture | classes reading material | classes visual aid | software objects guide | graphics reading material | attributes reading material | attributes visual guide | naming conventions reading material | code reading material | java keywords reading material | variables visual guide | arithmetic reading material | java assignment | making decisions task guide | making decisions lecture | making decisions reading material | boolean expressions visual guide | repetition reading material | while loops visual guide | methods reading material | methods practical | access modifiers reading material | objects reading material | classes assignment | classes practical | child classes task guide | inheritance task guide | extending classes lecture | inheritance reading material | inheritance visual guide | inheritance practical | graphics task guide | awt reading material | graphics visual aid | awt class library reading material | event-driven programming reading material | scrollbars reading material | reflective practice visual guide | mobile phone task guide | mobile phone lecture | fixed repitition reading material | fixed repitition visual guide | mobile phone library reading material | mobile phone reading material | arrays task guide | arrays lecture | arrays reading material | arrays visual guide | creating software objects reading material | software objects visual guide | java practical | generic array list task guide | overriding methods reading material | menu and switch task guide | multi-way decisions reading material | multi-way decisions visual guide | searching task guide | searching lecture | searching reading material | software quality task guide | software quality lecture | software quality reading material | programming assignment | applet reading material | classes visual guide | object-oriented programming | object-oriented | programming | java | problem solving | java program | software design | programming languages | computers | class task guide | class reading material | class assignment | class practical | java classes | variables | attributes | arithmetic | java class | classes and arithmetic | classes | class | decisions | boolean expression | boolean expressions | repetition | methods | aggregate classes | access modifier | access modifiers | child classes | inheritance | child class | graphics | awt class library | fixed repetition | for loop | for loops | array | arrays | iteration | software object | definite iteration | generic lists | generic array list | cast | casting | overriding method | overriding methods | generic list | menu-driven program | menu-driven programs | multi-way decisions | menu and switch | search | searching | software quality | testing | software quality and testing | assessment | computers task guide | programming languages task guide | software design task guide | java program task guide | problem-solving task guide | problem solving task guide | object-oriented programming task guide | java task guide | object-oriented task guide | object oriented task guide | computers lecture | programming languages lecture | software design lecture | java program lecture | problem solving lecture | object-oriented programming lecture | java lecture | object oriented programming lecture | object-oriented lecture | computers reading material | programming languages reading material | java program reading material | problem solving reading material | object-oriented programming reading material | java reading material | object-oriented reading material | object oriented reading material | java classes task guide | variables task guide | attributes task guide | arithmetic task guide | java class task guide | classes and arithmetic task guide | classes task guide | java classes lecture | variables lecture | attributes lecture | arithmetic lecture | java class lecture | classes and arithmetic lecture | classes lecture | class lecture | java classes reading material | variables reading material | java class reading material | classes and arithmetic reading material | java classes visual aid | variables visual aid | attributes visual aid | arithmetic visual aid | java class visual aid | classes and arithmetic visual aid | class visual aid | java visual aid | object-oriented programming visual aid | programming visual aid | object-oriented visual aid | decisions task guide | boolean expression task guide | boolean expressions task guide | repetition task guide | methods task guide | decisions lecture | boolean expression lecture | boolean expressions lecture | repetition lecture | methods lecture | decisions reading material | boolean expression reading material | boolean expressions reading material | decisions visual aid | boolean expression visual aid | boolean expressions visual aid | repetition visual aid | methods visual aid | decisions practical | boolean expression practical | boolean expressions practical | repetition practical | programming practical | object oriented programming practical | object-oriented programming practical | object-oriented practical | object oriented practical | aggregate classes task guide | access modifier task guide | access modifiers task guide | aggregate classes lecture | access modifier lecture | access modifiers lecture | aggregate classes reading material | access modifier reading material | aggregate classes assignment | java classes assignment | access modifier assignment | access modifiers assignment | object oriented programming assignment | object-oriented programming assignment | object-oriented assignment | object oriented assignment | child class task guide | child classes lecture | inheritance lecture | child class lecture | child classes reading material | child class reading material | child classes visual aid | inheritance visual aid | child class visual aid | awt class library task guide | graphics lecture | awt class library lecture | awt class library visual aid | graphics assignment | awt class library assignment | fixed repetition task guide | fixed repetition lecture | fixed repetition visual aid | fixed repetition reading material | for loop task guide | for loops task guide | array task guide | iteration task guide | software object task guide | definite iteration task guide | for loop lecture | for loops lecture | array lecture | iteration lecture | software object lecture | definite iteration lecture | for loop reading material | for loops reading material | array reading material | iteration reading material | software object reading material | definite iteration reading material | for loop visual aid | for loops visual aid | array visual aid | arrays visual aid | iteration visual aid | software object visual aid | definite iteration visual aid | generic lists task guide | cast task guide | casting task guide | overriding method task guide | overriding methods task guide | generic list task guide | generic lists lecture | generic array list lecture | cast lecture | casting lecture | overriding method lecture | overriding methods lecture | generic list lecture | generic lists reading material | generic array list reading material | cast reading material | casting reading material | overriding method reading material | generic list reading material | menu-driven program task guide | menu-driven programs task guide | multi-way decisions task guide | menu-driven program lecture | menu-driven programs lecture | multi-way decisions lecture | menu and switch lecture | menu-driven program reading material | menu-driven programs reading material | menu and switch reading material | menu-driven program visual aid | menu-driven programs visual aid | multi-way decisions visual aid | menu and switch visual aid | search task guide | search lecture | search reading material | testing task guide | software quality and testing task guide | testing lecture | software quality and testing lecture | testing reading material | software quality and testing reading material | assessment reading material | assessment assignment | fixed repetition practical | jcreator guide | g622 | oo | oop | oo programming | awt | oo programming task guide | oop task guide | oo task guide | g622 task guide | oo programming lecture | oop lecture | oo lecture | g622 lecture | oo programming reading material | oop reading material | oo reading material | g622 reading material | g622 visual aid | oop visual aid | oo visual aid | oo programming visual aid | g622 practical | oo practical | oo programming practical | oop practical | g622 assignment | oo assignment | oop assignment | oo programming assignment | awt task guide | awt lecture | awt visual aid | awt assignment | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT) 7.13 Experimental Microbial Genetics (MIT)

Description

In this class, students engage in independent research projects to probe various aspects of the physiology of the bacterium Pseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials In this class, students engage in independent research projects to probe various aspects of the physiology of the bacterium Pseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials

Subjects

microbiology | microbiology | genetics | genetics | pseudomonas | pseudomonas | bacteria | bacteria | genes | genes | pathogen | pathogen | mutagenesis | mutagenesis | PCR | PCR | DNA sequencing | DNA sequencing | enzyme assays | enzyme assays | gene expression | gene expression | molecular genetics | molecular genetics | plasmid manipulation | plasmid manipulation | genetic complementation | genetic complementation | laboratory | laboratory | protocol | protocol | vector | vector | mutant | mutant | cystic fibrosis | cystic fibrosis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Cancer Biology: From Basic Research to the Clinic (MIT) 7.342 Cancer Biology: From Basic Research to the Clinic (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In 1971, President Nixon declared the "War on Cancer," but after three decades the war is still raging. How much progress have we made toward winning the war and what are we doing to improve the fight? Understanding the molecular and cellular events involved in tumor formation, progression, and metastasis is crucial to the development of innovative therapy for cancer patients. Insights into these processes have been gleaned through basic research using biochemical, molecular, and genetic ana This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In 1971, President Nixon declared the "War on Cancer," but after three decades the war is still raging. How much progress have we made toward winning the war and what are we doing to improve the fight? Understanding the molecular and cellular events involved in tumor formation, progression, and metastasis is crucial to the development of innovative therapy for cancer patients. Insights into these processes have been gleaned through basic research using biochemical, molecular, and genetic ana

Subjects

cancer | cancer | tumor | tumor | metastasis | metastasis | genetic analysis | genetic analysis | cancer biology | cancer biology | model organisms | model organisms | genetic pathways | genetic pathways | uncontrolled growth | uncontrolled growth | tumor suppressor genes | tumor suppressor genes | oncogenes | oncogenes | tumor initiation | tumor initiation | cell cycle | cell cycle | chromosomal aberration | chromosomal aberration | apoptosis | apoptosis | cell death | cell death | signal transduction pathways | signal transduction pathways | proto-oncogene | proto-oncogene | mutation | mutation | DNA mismatch repair | DNA mismatch repair | telomeres | telomeres | mouse models | mouse models | tissue specificity | tissue specificity | malignancy | malignancy | stem cells | stem cells | therapeutic resistance | therapeutic resistance | differentiation | differentiation | caner research | caner research | cancer therapeutics | cancer therapeutics | chemotherapy | chemotherapy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT) 7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | microorganisms | geochemistry | geochemistry | geochemical agents | geochemical agents | biosphere | biosphere | bacterial genetics | bacterial genetics | carbon metabolism | carbon metabolism | energy metabolism | energy metabolism | productivity | productivity | biogeochemical cycles | biogeochemical cycles | molecular evolution | molecular evolution | population genetics | population genetics | evolution | evolution | population growth | population growth | biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | ecology | ecology | communities | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Behavioral Genetics (MIT) Behavioral Genetics (MIT)

Description

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications. How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.

Subjects

cognition | cognition | language | language | emotion | emotion | personality | personality | behavior | behavior | gene mapping | gene mapping | personality traits | personality traits | Mendelian genetics | Mendelian genetics | genetic mapping techniques | genetic mapping techniques | statistical analysis | statistical analysis | environmental | environmental | genetic programs | genetic programs | evolutionary genetics | evolutionary genetics | social | social | ethical | ethical | 9.19 | 9.19 | 7.66 | 7.66

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Behavioral Genetics (MIT) Behavioral Genetics (MIT)

Description

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications. How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.

Subjects

cognition | cognition | language | language | emotion | emotion | personality | personality | behavior | behavior | gene mapping | gene mapping | personality traits | personality traits | Mendelian genetics | Mendelian genetics | genetic mapping techniques | genetic mapping techniques | statistical analysis | statistical analysis | environmental | environmental | genetic programs | genetic programs | evolutionary genetics | evolutionary genetics | social | social | ethical | ethical | 9.19 | 9.19 | 7.66 | 7.66

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.01SC Fundamentals of Biology (MIT) 7.01SC Fundamentals of Biology (MIT)

Description

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality. Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.

Subjects

amino acids | amino acids | carboxyl group | carboxyl group | amino group | amino group | side chains | side chains | polar | polar | hydrophobic | hydrophobic | primary structure | primary structure | secondary structure | secondary structure | tertiary structure | tertiary structure | quaternary structure | quaternary structure | x-ray crystallography | x-ray crystallography | alpha helix | alpha helix | beta sheet | beta sheet | ionic bond | ionic bond | non-polar bond | non-polar bond | van der Waals interactions | van der Waals interactions | proton gradient | proton gradient | cyclic photophosphorylation | cyclic photophosphorylation | sunlight | sunlight | ATP | ATP | chlorophyll | chlorophyll | chlorophyll a | chlorophyll a | electrons | electrons | hydrogen sulfide | hydrogen sulfide | biosynthesis | biosynthesis | non-cyclic photophosphorylation | non-cyclic photophosphorylation | photosystem II | photosystem II | photosystem I | photosystem I | cyanobacteria | cyanobacteria | chloroplast | chloroplast | stroma | stroma | thylakoid membrane | thylakoid membrane | Genetics | Genetics | Mendel | Mendel | Mendel's Laws | Mendel's Laws | cloning | cloning | restriction enzymes | restriction enzymes | vector | vector | insert DNA | insert DNA | ligase | ligase | library | library | E.Coli | E.Coli | phosphatase | phosphatase | yeast | yeast | transformation | transformation | ARG1 gene | ARG1 gene | ARG1 mutant yeast | ARG1 mutant yeast | yeast wild-type | yeast wild-type | cloning by complementation | cloning by complementation | Human Beta Globin gene | Human Beta Globin gene | protein tetramer | protein tetramer | vectors | vectors | antibodies | antibodies | human promoter | human promoter | splicing | splicing | mRNA | mRNA | cDNA | cDNA | reverse transcriptase | reverse transcriptase | plasmid | plasmid | electrophoresis | electrophoresis | DNA sequencing | DNA sequencing | primer | primer | template | template | capillary tube | capillary tube | laser detector | laser detector | human genome project | human genome project | recombinant DNA | recombinant DNA | clone | clone | primer walking | primer walking | subcloning | subcloning | computer assembly | computer assembly | shotgun sequencing | shotgun sequencing | open reading frame | open reading frame | databases | databases | polymerase chain reaction (PCR) | polymerase chain reaction (PCR) | polymerase | polymerase | nucleotides | nucleotides | Thermus aquaticus | Thermus aquaticus | Taq polymerase | Taq polymerase | thermocycler | thermocycler | resequencing | resequencing | in vitro fertilization | in vitro fertilization | pre-implantation diagnostics | pre-implantation diagnostics | forensics | forensics | genetic engineering | genetic engineering | DNA sequences | DNA sequences | therapeutic proteins | therapeutic proteins | E. coli | E. coli | disease-causing mutations | disease-causing mutations | cleavage of DNA | cleavage of DNA | bacterial transformation | bacterial transformation | recombinant DNA revolution | recombinant DNA revolution | biotechnology industry | biotechnology industry | Robert Swanson | Robert Swanson | toxin gene | toxin gene | pathogenic bacterium | pathogenic bacterium | biomedical research | biomedical research | S. Pyogenes | S. Pyogenes | origin of replication | origin of replication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 When Development Goes Awry: How Cancer Co-opts Mechanisms of Embryogensis (MIT) 7.343 When Development Goes Awry: How Cancer Co-opts Mechanisms of Embryogensis (MIT)

Description

During this course, we will study the similarities between cancer and normal development to understand how tumors co-opt normal developmental processes to facilitate cancer initiation, maintenance and progression. We will examine critical signaling pathways that govern these processes and, importantly, how some of these pathways hold promise as therapeutic targets for cancer treatment. We will discuss how future treatments might be personalized to target cancer cells in specific patients. We will also consider examples of newly-approved drugs that have dramatically helped patients combat this devastating disease. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary res During this course, we will study the similarities between cancer and normal development to understand how tumors co-opt normal developmental processes to facilitate cancer initiation, maintenance and progression. We will examine critical signaling pathways that govern these processes and, importantly, how some of these pathways hold promise as therapeutic targets for cancer treatment. We will discuss how future treatments might be personalized to target cancer cells in specific patients. We will also consider examples of newly-approved drugs that have dramatically helped patients combat this devastating disease. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary res

Subjects

cancer | cancer | embryogenesis | embryogenesis | sonic hedgehog | sonic hedgehog | tumor | tumor | signaling | signaling | proto-oncogene | proto-oncogene | Kras | Kras | apoptosis | apoptosis | self-renewal | self-renewal | regeneration | regeneration | angiogenesis | angiogenesis | VEGF | VEGF | tumorigenesis | tumorigenesis | metastasis | metastasis | microRNA | microRNA

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.020 Introduction to Biological Engineering Design (MIT) 20.020 Introduction to Biological Engineering Design (MIT)

Description

Includes audio/video content: AV special element video. This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's Includes audio/video content: AV special element video. This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's

Subjects

biology | biology | chemistry | chemistry | synthetic biology | synthetic biology | project | project | biotech | biotech | genetic engineering | genetic engineering | GMO | GMO | ethics | ethics | biomedical ethics | biomedical ethics | genetics | genetics | recombinant DNA | recombinant DNA | DNA | DNA | gene sequencing | gene sequencing | gene synthesis | gene synthesis | biohacking | biohacking | computational biology | computational biology | iGEM | iGEM | BioBrick | BioBrick | systems biology | systems biology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.A12 Freshman Seminar: Structural Basis of Genetic Material: Nucleic Acids (MIT) 7.A12 Freshman Seminar: Structural Basis of Genetic Material: Nucleic Acids (MIT)

Description

Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials. Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.

Subjects

nucleic acids | nucleic acids | DNA | DNA | RNA | RNA | genetics | genetics | genes | genes | genetic material | genetic material | double helix | double helix | molecular biology | molecular biology | biotechnology | biotechnology | structure | structure | function | function | heredity | heredity | complementarity | complementarity | biological materials | biological materials | genetic code | genetic code | oligonucleotides | oligonucleotides | supercoiled DNA | supercoiled DNA | polyribosome | polyribosome | tRNA | tRNA | reverse transcription | reverse transcription | central dogma | central dogma | transcription | transcription

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.591J Systems Biology (MIT) 8.591J Systems Biology (MIT)

Description

Includes audio/video content: AV lectures. This course provides an introduction to cellular and population-level systems biology with an emphasis on synthetic biology, modeling of genetic networks, cell-cell interactions, and evolutionary dynamics. Cellular systems include genetic switches and oscillators, network motifs, genetic network evolution, and cellular decision-making. Population-level systems include models of pattern formation, cell-cell communication, and evolutionary systems biology. Includes audio/video content: AV lectures. This course provides an introduction to cellular and population-level systems biology with an emphasis on synthetic biology, modeling of genetic networks, cell-cell interactions, and evolutionary dynamics. Cellular systems include genetic switches and oscillators, network motifs, genetic network evolution, and cellular decision-making. Population-level systems include models of pattern formation, cell-cell communication, and evolutionary systems biology.

Subjects

molecular systems biology | molecular systems biology | genetic networks | genetic networks | control theory | control theory | synthetic genetic switches | synthetic genetic switches | bacterial chemotaxis | bacterial chemotaxis | genetic oscillators | genetic oscillators | circadian rhythms | circadian rhythms | cellular systems biology | cellular systems biology | reaction diffusion equations | reaction diffusion equations | local activation | local activation | global inhibition models | global inhibition models | gradient sensing systems | gradient sensing systems | center finding networks | center finding networks | general pattern formation models | general pattern formation models | cell-cell communication | cell-cell communication | quorum sensing | quorum sensing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.016 Introductory Biology (MIT) 7.016 Introductory Biology (MIT)

Description

7.016 Introductory Biology provides an introduction to fundamental principles of biochemistry, molecular biology and genetics for understanding the functions of living systems. Taught for the first time in Fall 2013, this course covers examples of the use of chemical biology and twenty-first-century molecular genetics in understanding human health and therapeutic intervention. The MIT Biology Department Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as the structure and synthesis of proteins, how these mol 7.016 Introductory Biology provides an introduction to fundamental principles of biochemistry, molecular biology and genetics for understanding the functions of living systems. Taught for the first time in Fall 2013, this course covers examples of the use of chemical biology and twenty-first-century molecular genetics in understanding human health and therapeutic intervention. The MIT Biology Department Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as the structure and synthesis of proteins, how these mol

Subjects

biochemistry | biochemistry | molecular biology | molecular biology | genetics | genetics | human genetics | human genetics | pedigrees | pedigrees | biochemical genetics | biochemical genetics | chemical biology | chemical biology | molecular genetics | molecular genetics | recombinant DNA technology | recombinant DNA technology | cell biology | cell biology | cancer | cancer | viruses | viruses | HIV | HIV | bacteria | bacteria | antibiotics | antibiotics | human health | human health | therapeutic intervention | therapeutic intervention | cell signaling | cell signaling | evolution | evolution | reproduction | reproduction | infectious diseases | infectious diseases | therapeutics | therapeutics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.480 Thermodynamics for Geoscientists (MIT) 12.480 Thermodynamics for Geoscientists (MIT)

Description

Principles of thermodynamics are used to infer the physical conditions of formation and modification of igneous and metamorphic rocks. It includes phase equilibria of homogeneous and heterogeneous systems and thermodynamic modelling of non-ideal crystalline solutions. It also surveys the processes that lead to the formation of metamorphic and igneous rocks in the major tectonic environments in the Earth's crust and mantle. Principles of thermodynamics are used to infer the physical conditions of formation and modification of igneous and metamorphic rocks. It includes phase equilibria of homogeneous and heterogeneous systems and thermodynamic modelling of non-ideal crystalline solutions. It also surveys the processes that lead to the formation of metamorphic and igneous rocks in the major tectonic environments in the Earth's crust and mantle.

Subjects

Principles of thermodynamics | Principles of thermodynamics | formation and modification of igneous and metamorphic rocks | formation and modification of igneous and metamorphic rocks | phase equilibria of homogeneous and heterogeneous systems | phase equilibria of homogeneous and heterogeneous systems | thermodynamic modelling of non-ideal crystalline solutions | thermodynamic modelling of non-ideal crystalline solutions | tectonic environments | tectonic environments | crust | crust | mantle | mantle | Ideal Solutions | Ideal Solutions | Non-ideal Solutions | Non-ideal Solutions | Pyroxene Thermometry | Pyroxene Thermometry | Plagioclase Feldspars Solution Models | Plagioclase Feldspars Solution Models | Alkali Feldspars Solution Models | Alkali Feldspars Solution Models | Multi-site Mineral Solutions | Multi-site Mineral Solutions | Homogeneous Equilibria | Homogeneous Equilibria | Quad | Quad | Spinels | Spinels | Rhombohedral Oxides | Rhombohedral Oxides | T-?O2 Relations | T-?O2 Relations | Heterogeneous Equilibria | Heterogeneous Equilibria | Multi-Component Systems | Multi-Component Systems | Liquidus Diagrams | Liquidus Diagrams | Schreinemaker's Analysis | Schreinemaker's Analysis | Composition Space | Composition Space | Gibbs Method | Gibbs Method | Silicate Melts | Silicate Melts | Mixed Volatile Equilibria P-T-XCO2-XH2O | Mixed Volatile Equilibria P-T-XCO2-XH2O | thermodynamic models | thermodynamic models | thermodynamics | thermodynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Communication (MIT) Communication (MIT)

Description

This introductory biology laboratory course covers the application of experimental techniques in microbiology, biochemistry, cell and developmental biology. Emphasis is placed on the integration of factual knowledge with understanding of the design of the experiments and data analysis in order to prepare the students for future research projects. Development of skills critical for writing about scientific findings in modern biology is also covered in the Scientific Communications portion of the curriculum, 7.02CI. Additional Faculty Dr. Katherine Bacon Schneider Dr. Jean-Francois Hamel Ms. Deborah Kruzel Dr. Megan Rokop This introductory biology laboratory course covers the application of experimental techniques in microbiology, biochemistry, cell and developmental biology. Emphasis is placed on the integration of factual knowledge with understanding of the design of the experiments and data analysis in order to prepare the students for future research projects. Development of skills critical for writing about scientific findings in modern biology is also covered in the Scientific Communications portion of the curriculum, 7.02CI. Additional Faculty Dr. Katherine Bacon Schneider Dr. Jean-Francois Hamel Ms. Deborah Kruzel Dr. Megan Rokop

Subjects

experimental biology | experimental biology | microbial genetics | microbial genetics | protein biochemistry | protein biochemistry | recombinant DNA | recombinant DNA | development | development | zebrafish | zebrafish | phase contrast microscopy | phase contrast microscopy | teratogenesis | teratogenesis | rna isolation | rna isolation | northern blot | northern blot | gene expression | gene expression | western blot | western blot | PCR | PCR | polymerase chain reaction | polymerase chain reaction | RNA gel | RNA gel | RNA fixation | RNA fixation | probe labeling | probe labeling | mutagenesis | mutagenesis | transposon | transposon | column chromatography | column chromatography | size-exclusion chromatography | size-exclusion chromatography | anion exchange chromatography | anion exchange chromatography | SDS-Page gel | SDS-Page gel | enzyme kinetics | enzyme kinetics | transformation | transformation | primers | primers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata