Searching for gene regulation : 32 results found | RSS Feed for this search

1

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT) 7.28 Molecular Biology (MIT)

Description

Molecular Biology - Detailed analysis of the biochemical mechanisms that control the maintenance, expression and evolution of prokaryotic and eukaryotic genomes.Topics covered in 7.28 lectures and readings of primary literature include:DNA replication,DNA repair,genetic recombination,gene expression,RNA processing, andtranslation.The logic of experimental design and data analysis is emphasized. Presentations include lectures, reading assignments and group discussions. Writing assignments, Problem Sets (ungraded) and review sessions also contribute to the course content. Molecular Biology - Detailed analysis of the biochemical mechanisms that control the maintenance, expression and evolution of prokaryotic and eukaryotic genomes.Topics covered in 7.28 lectures and readings of primary literature include:DNA replication,DNA repair,genetic recombination,gene expression,RNA processing, andtranslation.The logic of experimental design and data analysis is emphasized. Presentations include lectures, reading assignments and group discussions. Writing assignments, Problem Sets (ungraded) and review sessions also contribute to the course content.

Subjects

genetic recombination | genetic recombination | DNA replication | DNA replication | gene regulation | gene regulation | molecules | molecules

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT) 7.012 Introduction to Biology (MIT)

Description

All three courses: 7.012, 7.013 and 7.014 cover the same core material which includes: the fundamental principles of biochemistry as they apply to introductory biology, genetics, molecular biology, basic recombinant DNA technology, and gene regulation.In addition, each version of the subject has its own distinctive material, described below. Note: All three versions require a familiarity with some basic chemistry. For details, see the Chemistry Self-evaluation.7.012 focuses on cell biology, immunology, neurobiology, and includes an exploration into current research in cancer, genomics, and molecular medicine. 7.013 focuses on the application of the fundamental principles toward an understanding of cells, human genetics and diseases, infectious agents, cancer, immunology, molecular All three courses: 7.012, 7.013 and 7.014 cover the same core material which includes: the fundamental principles of biochemistry as they apply to introductory biology, genetics, molecular biology, basic recombinant DNA technology, and gene regulation.In addition, each version of the subject has its own distinctive material, described below. Note: All three versions require a familiarity with some basic chemistry. For details, see the Chemistry Self-evaluation.7.012 focuses on cell biology, immunology, neurobiology, and includes an exploration into current research in cancer, genomics, and molecular medicine. 7.013 focuses on the application of the fundamental principles toward an understanding of cells, human genetics and diseases, infectious agents, cancer, immunology, molecular

Subjects

amino acids | amino acids | biochemistry | biochemistry | cancer | cancer | cell biology | cell biology | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | DNA | DNA | endoplasmic reticulum | endoplasmic reticulum | gene regulation | gene regulation | gene structure | gene structure | genetics | genetics | genomics | genomics | immunology | immunology | molecular biology | molecular biology | molecular medicine | molecular medicine | mRNA | mRNA | nervous system | nervous system | neurobiology | neurobiology | PCR | PCR | polymerase chain reaction | polymerase chain reaction | polypeptide chain | polypeptide chain | protein localization | protein localization | protein structure | protein structure | protein synthesis | protein synthesis | proteins | proteins | recombinant DNA | recombinant DNA | replication | replication | ribosome | ribosome | RNA | RNA | stem cells | stem cells | transcription | transcription | translation | translation | virology | virology | biology | biology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT) 7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | microorganisms | geochemistry | geochemistry | geochemical agents | geochemical agents | biosphere | biosphere | bacterial genetics | bacterial genetics | carbon metabolism | carbon metabolism | energy metabolism | energy metabolism | productivity | productivity | biogeochemical cycles | biogeochemical cycles | molecular evolution | molecular evolution | population genetics | population genetics | evolution | evolution | population growth | population growth | biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | ecology | ecology | communities | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT) 7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In add The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In add

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT) 7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized. This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | molecular biology | biochemical mechanisms | biochemical mechanisms | gene expression | gene expression | evolution | evolution | prokaryotic genome | prokaryotic genome | eukaryotic genomes | eukaryotic genomes | gene regulation | gene regulation | DNA replication | DNA replication | genetic recombination | genetic recombination | RNA processing | RNA processing | translation | translation | genome | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.530 Cellular and Molecular Computation (MIT) 9.530 Cellular and Molecular Computation (MIT)

Description

Life as an emergent property of networks of chemical reactions involving proteins and nucleic acids. Mathematical theories of metabolism, gene regulation, signal transduction, chemotaxis, excitability, motility, mitosis, development, and immunity. Applications to directed molecular evolution, DNA computing, and metabolic and genetic engineering. Life as an emergent property of networks of chemical reactions involving proteins and nucleic acids. Mathematical theories of metabolism, gene regulation, signal transduction, chemotaxis, excitability, motility, mitosis, development, and immunity. Applications to directed molecular evolution, DNA computing, and metabolic and genetic engineering.

Subjects

emergent | emergent | network | network | chemical reactions | chemical reactions | proteins | proteins | nucleic acids | nucleic acids | metabolism | metabolism | gene regulation | gene regulation | signal transduction | signal transduction | chemotaxis | chemotaxis | excitability | excitability | motility | motility | mitosis | mitosis | development | development | immunity | immunity | molecular evolution | molecular evolution | DNA computing | DNA computing | metabolic | metabolic | genetic engineering | genetic engineering | Neural networks | Neural networks

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Analysis of Biomolecular and Cellular Systems (MIT) 20.320 Analysis of Biomolecular and Cellular Systems (MIT)

Description

This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

biological engineering | biological engineering | kinase | kinase | PyMOL | PyMOL | PyRosetta | PyRosetta | MATLAB | MATLAB | Michaelis-Menten | Michaelis-Menten | bioreactor | bioreactor | bromodomain | bromodomain | protein-ligand interactions | protein-ligand interactions | titration analysis | titration analysis | fractional separation | fractional separation | isothermal titration calorimetry | isothermal titration calorimetry | ITC | ITC | mass spectrometry | mass spectrometry | MS | MS | co-immunoprecipitation | co-immunoprecipitation | Co-IP | Co-IP | Forster resonance energy transfer | Forster resonance energy transfer | FRET | FRET | primary ligation assay | primary ligation assay | PLA | PLA | surface plasmon resonance | surface plasmon resonance | SPR | SPR | enzyme kinetics | enzyme kinetics | kinase engineering | kinase engineering | competitive inhibition | competitive inhibition | epidermal growth factor receptor | epidermal growth factor receptor | mitogen-activated protein kinase | mitogen-activated protein kinase | MAPK | MAPK | genome editing | genome editing | Imatinib | Imatinib | Gleevec | Gleevec | Glivec | Glivec | drug delivery | drug delivery | kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Biomolecular Kinetics and Cell Dynamics (MIT) 20.320 Biomolecular Kinetics and Cell Dynamics (MIT)

Description

This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling | cell population scale | cell population scale

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Biomolecular Kinetics and Cell Dynamics (MIT)

Description

This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

kinetics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | dynamics of cellular processes | intracellular scale | extracellular scale | and cell population scale | biotechnology applications | gene regulation networks | nucleic acid hybridization | signal transduction pathways | cell populations in tissues | cell populations in bioreactors | experimental methods | quantitative analysis | computational modeling | cell population scale

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | geochemistry | geochemical agents | biosphere | bacterial genetics | carbon metabolism | energy metabolism | productivity | biogeochemical cycles | molecular evolution | population genetics | evolution | population growth | biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum | ecology | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allkoreancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allkoreancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | biochemical mechanisms | gene expression | evolution | prokaryotic genome | eukaryotic genomes | gene regulation | DNA replication | genetic recombination | RNA processing | translation | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | biochemical mechanisms | gene expression | evolution | prokaryotic genome | eukaryotic genomes | gene regulation | DNA replication | genetic recombination | RNA processing | translation | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | biochemical mechanisms | gene expression | evolution | prokaryotic genome | eukaryotic genomes | gene regulation | DNA replication | genetic recombination | RNA processing | translation | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Gene Expression and Regulation

Description

Please visit the Virtual Genetics Education Centre in GENIE for more first-class OERs.

Subjects

gene expression and regulation genetic code protein synthesis structures of cells gene expression gene regulation genetics | Subjects allied to medicine | B000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Biomolecular Kinetics and Cell Dynamics (MIT)

Description

This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

kinetics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | dynamics of cellular processes | intracellular scale | extracellular scale | and cell population scale | biotechnology applications | gene regulation networks | nucleic acid hybridization | signal transduction pathways | cell populations in tissues | cell populations in bioreactors | experimental methods | quantitative analysis | computational modeling | cell population scale

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum | human biology | inherited diseases | developmental biology | evolution | human genetics | human diseases | infectious agents | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

Molecular Biology - Detailed analysis of the biochemical mechanisms that control the maintenance, expression and evolution of prokaryotic and eukaryotic genomes.Topics covered in 7.28 lectures and readings of primary literature include:DNA replication,DNA repair,genetic recombination,gene expression,RNA processing, andtranslation.The logic of experimental design and data analysis is emphasized. Presentations include lectures, reading assignments and group discussions. Writing assignments, Problem Sets (ungraded) and review sessions also contribute to the course content.

Subjects

genetic recombination | DNA replication | gene regulation | molecules

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT)

Description

All three courses: 7.012, 7.013 and 7.014 cover the same core material which includes: the fundamental principles of biochemistry as they apply to introductory biology, genetics, molecular biology, basic recombinant DNA technology, and gene regulation.In addition, each version of the subject has its own distinctive material, described below. Note: All three versions require a familiarity with some basic chemistry. For details, see the Chemistry Self-evaluation.7.012 focuses on cell biology, immunology, neurobiology, and includes an exploration into current research in cancer, genomics, and molecular medicine. 7.013 focuses on the application of the fundamental principles toward an understanding of cells, human genetics and diseases, infectious agents, cancer, immunology, molecular

Subjects

amino acids | biochemistry | cancer | cell biology | cell cycle | cell signaling | cloning | DNA | endoplasmic reticulum | gene regulation | gene structure | genetics | genomics | immunology | molecular biology | molecular medicine | mRNA | nervous system | neurobiology | PCR | polymerase chain reaction | polypeptide chain | protein localization | protein structure | protein synthesis | proteins | recombinant DNA | replication | ribosome | RNA | stem cells | transcription | translation | virology | biology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata