Searching for genetic analysis : 14 results found | RSS Feed for this search

1

7.03 Genetics (MIT) 7.03 Genetics (MIT)

Description

This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease. This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subjects

genetics | genetics | gene | gene | DNA | DNA | RNA | RNA | mutation | mutation | genome | genome | Watson and Crick | Watson and Crick | replication | replication | transcription | transcription | DNA heliz | DNA heliz | double helix | double helix | mRNA | mRNA | messenger RNA | messenger RNA | translation | translation | ribosome | ribosome | promoter | promoter | genetic analysis | genetic analysis | alleles | alleles | genotype | genotype | wild type | wild type | phenotype | phenotype | haploid | haploid | diploid | diploid | auxotrophic mutation | auxotrophic mutation | homozygous | homozygous | heterozygous | heterozygous | recessive allele | recessive allele | dominant allele | dominant allele | complementation test | complementation test | locus | locus | incomplete dominance | incomplete dominance | incomplete penetrance | incomplete penetrance | true-breeding | true-breeding | gametes | gametes | codominant | codominant | meiosis | meiosis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Cancer Biology: From Basic Research to the Clinic (MIT) 7.342 Cancer Biology: From Basic Research to the Clinic (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In 1971, President Nixon declared the "War on Cancer," but after three decades the war is still raging. How much progress have we made toward winning the war and what are we doing to improve the fight? Understanding the molecular and cellular events involved in tumor formation, progression, and metastasis is crucial to the development of innovative therapy for cancer patients. Insights into these processes have been gleaned through basic research using biochemical, molecular, and genetic ana This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In 1971, President Nixon declared the "War on Cancer," but after three decades the war is still raging. How much progress have we made toward winning the war and what are we doing to improve the fight? Understanding the molecular and cellular events involved in tumor formation, progression, and metastasis is crucial to the development of innovative therapy for cancer patients. Insights into these processes have been gleaned through basic research using biochemical, molecular, and genetic ana

Subjects

cancer | cancer | tumor | tumor | metastasis | metastasis | genetic analysis | genetic analysis | cancer biology | cancer biology | model organisms | model organisms | genetic pathways | genetic pathways | uncontrolled growth | uncontrolled growth | tumor suppressor genes | tumor suppressor genes | oncogenes | oncogenes | tumor initiation | tumor initiation | cell cycle | cell cycle | chromosomal aberration | chromosomal aberration | apoptosis | apoptosis | cell death | cell death | signal transduction pathways | signal transduction pathways | proto-oncogene | proto-oncogene | mutation | mutation | DNA mismatch repair | DNA mismatch repair | telomeres | telomeres | mouse models | mouse models | tissue specificity | tissue specificity | malignancy | malignancy | stem cells | stem cells | therapeutic resistance | therapeutic resistance | differentiation | differentiation | caner research | caner research | cancer therapeutics | cancer therapeutics | chemotherapy | chemotherapy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 RNA Interference: A New Tool for Genetic Analysis and Therapeutics (MIT) 7.344 RNA Interference: A New Tool for Genetic Analysis and Therapeutics (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has a This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has a

Subjects

RNA interference | RNA interference | RNAi | RNAi | RNA | RNA | genetic analysis | genetic analysis | gene therapy | gene therapy | gene products | gene products | gene silencing | gene silencing | gene expression | gene expression | human disease models | human disease models | mRNA | mRNA | genetic interference | genetic interference | short interfering RNA | short interfering RNA | siRNAs | siRNAs | expression vectors | expression vectors | RNA sequences | RNA sequences | nucleotide fragments | nucleotide fragments | microRNA | microRNA | mRNA degradation | mRNA degradation | transgenic mice | transgenic mice | lentivirus | lentivirus | knock-down animals | knock-down animals | tissue specificity | tissue specificity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.322J Genetic Neurobiology (MIT) 9.322J Genetic Neurobiology (MIT)

Description

This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans. This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.

Subjects

neurobiology | neurobiology | genetics | genetics | bacterial chemoreception | bacterial chemoreception | neurogenomics | neurogenomics | genetic analysis | genetic analysis | axonal pathfinding | axonal pathfinding | neurodevelopment | neurodevelopment | synapse formation | synapse formation | neurogenetics | neurogenetics | higher brain function | higher brain function | neuronal ensembles | neuronal ensembles | molecular analysis | molecular analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.322J Genetic Neurobiology (MIT) 9.322J Genetic Neurobiology (MIT)

Description

This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans. This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.

Subjects

neurobiology | neurobiology | genetics | genetics | bacterial chemoreception | bacterial chemoreception | neurogenomics | neurogenomics | genetic analysis | genetic analysis | axonal pathfinding | axonal pathfinding | neurodevelopment | neurodevelopment | synapse formation | synapse formation | neurogenetics | neurogenetics | higher brain function | higher brain function | neuronal ensembles | neuronal ensembles | molecular analysis | molecular analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Genetic Analysis - Question Sets

Description

The Genetic Analysis SBLi is a set of scenarios designed to support an undergraduate course in Genetics. In the scenarios the student plays the role of a genetics researcher, and performs simulated experiments to reinforce concepts taught in lectures. This project is part of the the Higher Education Academy's UK Centre for Bioscience Open Educational Resources programme. This package contains question sets extracted from the Genetic Analysis Scenarios so that these can be easily used seperately. Questions are available in a set of word documents as well as in IMS1_1_3 format for ease of use.

Subjects

bioukoer | ukoer | genetics | genetic analysis | question sets | Biological sciences | C000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Genetic Analysis - Images

Description

The Genetic Analysis SBLi is a set of scenarios designed to support an undergraduate course in Genetics. In the scenarios the student plays the role of a genetics researcher, and performs simulated experiments to reinforce concepts taught in lectures. This project is part of the the Higher Education Academy's UK Centre for Bioscience Open Educational Resources programme. This package contains images used within the Scenarios.

Subjects

bioukoer | ukoer | genetics | genetic analysis | images | image collection | laboratory | office | Biological sciences | C000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Genetic Analysis - Website and Information

Description

The Genetic Analysis SBLi is a set of scenarios designed to support an undergraduate course in Genetics. In the scenarios the student plays the role of a genetics researcher, and performs simulated experiments to reinforce concepts taught in lectures. This project is part of the the Higher Education Academy's UK Centre for Bioscience Open Educational Resources programme. This website contains additional information, guides and documentation.

Subjects

bioukoer | ukoer | genetics | genetic analysis | Biological sciences | C000

License

Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-nd/2.0/uk/ http://creativecommons.org/licenses/by-nc-nd/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Genetic Analysis - Scenario Files

Description

The Genetic Analysis SBLi is a set of scenarios designed to support an undergraduate course in Genetics. In the scenarios the student plays the role of a genetics researcher, and performs simulated experiments to reinforce concepts taught in lectures. This project is part of the the Higher Education Academy's UK Centre for Bioscience Open Educational Resources programme. This package contains the SBLiB scenario files, and can be edited by the use of the SBL Interactive Builder, access to which can be requested here: http://www.survey.ls.manchester.ac.uk/TakeSurvey.aspx?SurveyID=m61K8p9. Scenarios can be viewed here: http://sbli.ls.manchester.ac.uk/OER

Subjects

bioukoer | ukoer | genetics | genetic analysis | scenario | Biological sciences | C000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.03 Genetics (MIT)

Description

This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subjects

genetics | gene | DNA | RNA | mutation | genome | Watson and Crick | replication | transcription | DNA heliz | double helix | mRNA | messenger RNA | translation | ribosome | promoter | genetic analysis | alleles | genotype | wild type | phenotype | haploid | diploid | auxotrophic mutation | homozygous | heterozygous | recessive allele | dominant allele | complementation test | locus | incomplete dominance | incomplete penetrance | true-breeding | gametes | codominant | meiosis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Cancer Biology: From Basic Research to the Clinic (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In 1971, President Nixon declared the "War on Cancer," but after three decades the war is still raging. How much progress have we made toward winning the war and what are we doing to improve the fight? Understanding the molecular and cellular events involved in tumor formation, progression, and metastasis is crucial to the development of innovative therapy for cancer patients. Insights into these processes have been gleaned through basic research using biochemical, molecular, and genetic ana

Subjects

cancer | tumor | metastasis | genetic analysis | cancer biology | model organisms | genetic pathways | uncontrolled growth | tumor suppressor genes | oncogenes | tumor initiation | cell cycle | chromosomal aberration | apoptosis | cell death | signal transduction pathways | proto-oncogene | mutation | DNA mismatch repair | telomeres | mouse models | tissue specificity | malignancy | stem cells | therapeutic resistance | differentiation | caner research | cancer therapeutics | chemotherapy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 RNA Interference: A New Tool for Genetic Analysis and Therapeutics (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has a

Subjects

RNA interference | RNAi | RNA | genetic analysis | gene therapy | gene products | gene silencing | gene expression | human disease models | mRNA | genetic interference | short interfering RNA | siRNAs | expression vectors | RNA sequences | nucleotide fragments | microRNA | mRNA degradation | transgenic mice | lentivirus | knock-down animals | tissue specificity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.322J Genetic Neurobiology (MIT)

Description

This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.

Subjects

neurobiology | genetics | bacterial chemoreception | neurogenomics | genetic analysis | axonal pathfinding | neurodevelopment | synapse formation | neurogenetics | higher brain function | neuronal ensembles | molecular analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.322J Genetic Neurobiology (MIT)

Description

This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.

Subjects

neurobiology | genetics | bacterial chemoreception | neurogenomics | genetic analysis | axonal pathfinding | neurodevelopment | synapse formation | neurogenetics | higher brain function | neuronal ensembles | molecular analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata