Searching for genetics : 255 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10

7.016 Introductory Biology (MIT) 7.016 Introductory Biology (MIT)

Description

7.016 Introductory Biology provides an introduction to fundamental principles of biochemistry, molecular biology and genetics for understanding the functions of living systems. Taught for the first time in Fall 2013, this course covers examples of the use of chemical biology and twenty-first-century molecular genetics in understanding human health and therapeutic intervention. The MIT Biology Department Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as the structure and synthesis of proteins, how these mol 7.016 Introductory Biology provides an introduction to fundamental principles of biochemistry, molecular biology and genetics for understanding the functions of living systems. Taught for the first time in Fall 2013, this course covers examples of the use of chemical biology and twenty-first-century molecular genetics in understanding human health and therapeutic intervention. The MIT Biology Department Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as the structure and synthesis of proteins, how these mol

Subjects

biochemistry | biochemistry | molecular biology | molecular biology | genetics | genetics | human genetics | human genetics | pedigrees | pedigrees | biochemical genetics | biochemical genetics | chemical biology | chemical biology | molecular genetics | molecular genetics | recombinant DNA technology | recombinant DNA technology | cell biology | cell biology | cancer | cancer | viruses | viruses | HIV | HIV | bacteria | bacteria | antibiotics | antibiotics | human health | human health | therapeutic intervention | therapeutic intervention | cell signaling | cell signaling | evolution | evolution | reproduction | reproduction | infectious diseases | infectious diseases | therapeutics | therapeutics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT) 7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | microorganisms | geochemistry | geochemistry | geochemical agents | geochemical agents | biosphere | biosphere | bacterial genetics | bacterial genetics | carbon metabolism | carbon metabolism | energy metabolism | energy metabolism | productivity | productivity | biogeochemical cycles | biogeochemical cycles | molecular evolution | molecular evolution | population genetics | population genetics | evolution | evolution | population growth | population growth | biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | ecology | ecology | communities | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 The Fountain of Life: From Dolly to Customized Embryonic Stem Cells (MIT) 7.344 The Fountain of Life: From Dolly to Customized Embryonic Stem Cells (MIT)

Description

During development, the genetic content of each cell remains, with a few exceptions, identical to that of the zygote. Most differentiated cells therefore retain all of the genetic information necessary to generate an entire organism. It was through pioneering technology of somatic cell nuclear transfer (SCNT) that this concept was experimentally proven. Only 10 years ago the sheep Dolly was the first mammal to be cloned from an adult organism, demonstrating that the differentiated state of a mammalian cell can be fully reversible to a pluripotent embryonic state. A key conclusion from these experiments was that the difference between pluripotent cells such as embryonic stem (ES) cells and unipotent differentiated cells is solely a consequence of reversible changes. These changes, which hav During development, the genetic content of each cell remains, with a few exceptions, identical to that of the zygote. Most differentiated cells therefore retain all of the genetic information necessary to generate an entire organism. It was through pioneering technology of somatic cell nuclear transfer (SCNT) that this concept was experimentally proven. Only 10 years ago the sheep Dolly was the first mammal to be cloned from an adult organism, demonstrating that the differentiated state of a mammalian cell can be fully reversible to a pluripotent embryonic state. A key conclusion from these experiments was that the difference between pluripotent cells such as embryonic stem (ES) cells and unipotent differentiated cells is solely a consequence of reversible changes. These changes, which hav

Subjects

embryonic stem cells | embryonic stem cells | stem cells | stem cells | cells | cells | genetics | genetics | genome | genome | Dolly | Dolly | clone | clone | regenerative therapy | regenerative therapy | somatic | somatic | SCNT | SCNT | pluripotent | pluripotent | scientific literature | scientific literature | nuclear | nuclear | embryonic | embryonic | adult | adult | epigenetics | epigenetics | methylation | methylation | DNA | DNA | histone | histone | biomedical | biomedical | differentiation | differentiation | epigenome | epigenome | nuclear transfer | nuclear transfer | customized | customized | zygote | zygote | RNA | RNA | cancer | cancer | medicine | medicine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.27 Principles of Human Disease (MIT) 7.27 Principles of Human Disease (MIT)

Description

This course covers current understanding of, and modern approaches to human disease, emphasizing the molecular and cellular basis of both genetic disease and cancer. Topics include: The Genetics of Simple and Complex Traits; Karyotypic Analysis and Positional Cloning; Genetic Diagnosis; The Roles of Oncogenes and Tumor Suppressors in Tumor Initiation, Progression, and Treatment; The Interaction between Genetics and Environment; Animal Models of Human Disease; Cancer; and Conventional and Gene Therapy Treatment Strategies. This course covers current understanding of, and modern approaches to human disease, emphasizing the molecular and cellular basis of both genetic disease and cancer. Topics include: The Genetics of Simple and Complex Traits; Karyotypic Analysis and Positional Cloning; Genetic Diagnosis; The Roles of Oncogenes and Tumor Suppressors in Tumor Initiation, Progression, and Treatment; The Interaction between Genetics and Environment; Animal Models of Human Disease; Cancer; and Conventional and Gene Therapy Treatment Strategies.

Subjects

human disease | human disease | molecular basis of genetic disease | molecular basis of genetic disease | molecular basis of cancer | molecular basis of cancer | cellular basis of genetic disease | cellular basis of genetic disease | cellular basis of cancer | cellular basis of cancer | genetics of simple and complex traits | genetics of simple and complex traits | karyotypic analysis | karyotypic analysis | positional cloning | positional cloning | genetic diagnosis | genetic diagnosis | roles of oncogenes | roles of oncogenes | tumor suppressors | tumor suppressors | tumor initiation | tumor initiation | tumor progression | tumor progression | tumor treatment | tumor treatment | interaction between genetics and environment | interaction between genetics and environment | animal models of human disease | animal models of human disease | cancer | cancer | conventional treatment strategies | conventional treatment strategies | gene therapy treatment strategies | gene therapy treatment strategies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT) 7.13 Experimental Microbial Genetics (MIT)

Description

Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology. Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology.

Subjects

microbiology | microbiology | genetics | genetics | rhodococcus | rhodococcus | bacteria | bacteria | genes | genes | plasmid manipulation | plasmid manipulation | mutagenesis | mutagenesis | PCR | PCR | DNA sequencing | DNA sequencing | enzyme assays | enzyme assays | gene expression | gene expression | molecular genetics | molecular genetics | Gram-positive | Gram-positive | gram-negative | gram-negative | bioconversion processes | bioconversion processes | synthesis | synthesis | precursors | precursors | metabolites | metabolites | genetic complementation | genetic complementation | laboratory | laboratory | lab | lab

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.322J Genetic Neurobiology (MIT) 9.322J Genetic Neurobiology (MIT)

Description

This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans. This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.

Subjects

neurobiology | neurobiology | genetics | genetics | bacterial chemoreception | bacterial chemoreception | neurogenomics | neurogenomics | genetic analysis | genetic analysis | axonal pathfinding | axonal pathfinding | neurodevelopment | neurodevelopment | synapse formation | synapse formation | neurogenetics | neurogenetics | higher brain function | higher brain function | neuronal ensembles | neuronal ensembles | molecular analysis | molecular analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.016 Introductory Biology (MIT)

Description

7.016 Introductory Biology provides an introduction to fundamental principles of biochemistry, molecular biology and genetics for understanding the functions of living systems. Taught for the first time in Fall 2013, this course covers examples of the use of chemical biology and twenty-first-century molecular genetics in understanding human health and therapeutic intervention. The MIT Biology Department Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as the structure and synthesis of proteins, how these mol

Subjects

biochemistry | molecular biology | genetics | human genetics | pedigrees | biochemical genetics | chemical biology | molecular genetics | recombinant DNA technology | cell biology | cancer | viruses | HIV | bacteria | antibiotics | human health | therapeutic intervention | cell signaling | evolution | reproduction | infectious diseases | therapeutics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT) 7.13 Experimental Microbial Genetics (MIT)

Description

Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology. Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology.

Subjects

microbiology | microbiology | genetics | genetics | rhodococcus | rhodococcus | bacteria | bacteria | genes | genes | plasmid manipulation | plasmid manipulation | mutagenesis | mutagenesis | PCR | PCR | DNA sequencing | DNA sequencing | enzyme assays | enzyme assays | gene expression | gene expression | molecular genetics | molecular genetics | Gram-positive | Gram-positive | gram-negative | gram-negative | bioconversion processes | bioconversion processes | synthesis | synthesis | precursors | precursors | metabolites | metabolites | genetic complementation | genetic complementation | laboratory | laboratory | lab | lab

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.322J Genetic Neurobiology (MIT) 9.322J Genetic Neurobiology (MIT)

Description

This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans. This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.

Subjects

neurobiology | neurobiology | genetics | genetics | bacterial chemoreception | bacterial chemoreception | neurogenomics | neurogenomics | genetic analysis | genetic analysis | axonal pathfinding | axonal pathfinding | neurodevelopment | neurodevelopment | synapse formation | synapse formation | neurogenetics | neurogenetics | higher brain function | higher brain function | neuronal ensembles | neuronal ensembles | molecular analysis | molecular analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.592 Statistical Physics in Biology (MIT) 8.592 Statistical Physics in Biology (MIT)

Description

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; Considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.Technical RequirementsAny number of biological sequence comparison software tools can be used to import the .fna files found on this course site. Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; Considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.Technical RequirementsAny number of biological sequence comparison software tools can be used to import the .fna files found on this course site.

Subjects

Bioinformatics | Bioinformatics | DNA | DNA | gene finding | gene finding | sequence comparison | sequence comparison | phylogenetic trees | phylogenetic trees | biopolymers | biopolymers | DNA double helix | DNA double helix | secondary structure of RNA | secondary structure of RNA | protein folding | protein folding | protein motors | membranes | protein motors | membranes | cellular networks | cellular networks | neural networks | neural networks | evolution | evolution | statistical physics | statistical physics | molecular biology | molecular biology | deoxyribonucleic acid | deoxyribonucleic acid | genes | genes | genetics | genetics | gene sequencing | gene sequencing | phylogenetics | phylogenetics | double helix | double helix | RNA | RNA | ribonucleic acid | ribonucleic acid | force | force | motion | motion | packaging | packaging | protein motors | protein motors | membranes | membranes | biochemistry | biochemistry | genome | genome | optimization | optimization | partitioning | partitioning | pattern recognition | pattern recognition | collective behavior | collective behavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Behavioral Genetics (MIT) Behavioral Genetics (MIT)

Description

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications. How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.

Subjects

cognition | cognition | language | language | emotion | emotion | personality | personality | behavior | behavior | gene mapping | gene mapping | personality traits | personality traits | Mendelian genetics | Mendelian genetics | genetic mapping techniques | genetic mapping techniques | statistical analysis | statistical analysis | environmental | environmental | genetic programs | genetic programs | evolutionary genetics | evolutionary genetics | social | social | ethical | ethical | 9.19 | 9.19 | 7.66 | 7.66

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Behavioral Genetics (MIT) Behavioral Genetics (MIT)

Description

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications. How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.

Subjects

cognition | cognition | language | language | emotion | emotion | personality | personality | behavior | behavior | gene mapping | gene mapping | personality traits | personality traits | Mendelian genetics | Mendelian genetics | genetic mapping techniques | genetic mapping techniques | statistical analysis | statistical analysis | environmental | environmental | genetic programs | genetic programs | evolutionary genetics | evolutionary genetics | social | social | ethical | ethical | 9.19 | 9.19 | 7.66 | 7.66

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.508 Quantitative Genomics (MIT) HST.508 Quantitative Genomics (MIT)

Description

This course provides a foundation in the following four areas: evolutionary and population genetics; comparative genomics; structural genomics and proteomics; and functional genomics and regulation. This course provides a foundation in the following four areas: evolutionary and population genetics; comparative genomics; structural genomics and proteomics; and functional genomics and regulation.

Subjects

genomics | genomics | quantitative genomics | quantitative genomics | comparative genomics | comparative genomics | genes | genes | genome | genome | SNPs | SNPs | haplotypes | haplotypes | sequence alignment | sequence alignment | protein structure | protein structure | protein folding | protein folding | proteomics | proteomics | structural genomics | structural genomics | functional genomics | functional genomics | networks | networks | systems biology | systems biology | biological networks | biological networks | RNA | RNA | DNA | DNA | gene expression | gene expression | evolutionary genetics | evolutionary genetics | population genetics | population genetics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.15 Experimental Molecular Genetics (MIT) 7.15 Experimental Molecular Genetics (MIT)

Description

This project-based laboratory course provides students with in-depth experience in experimental molecular genetics, using modern methods of molecular biology and genetics to conduct original research. The course is geared towards students (including sophomores) who have a strong interest in a future career in biomedical research. This semester will focus on chemical genetics using Caenorhabditis elegans as a model system. Students will gain experience in research rationale and methods, as well as training in the planning, execution, and communication of experimental biology. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear This project-based laboratory course provides students with in-depth experience in experimental molecular genetics, using modern methods of molecular biology and genetics to conduct original research. The course is geared towards students (including sophomores) who have a strong interest in a future career in biomedical research. This semester will focus on chemical genetics using Caenorhabditis elegans as a model system. Students will gain experience in research rationale and methods, as well as training in the planning, execution, and communication of experimental biology. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear

Subjects

molecular genetics | molecular genetics | molecular biology | molecular biology | chemical genetics | chemical genetics | Caenorhabditis elegans | Caenorhabditis elegans | experimental biology | experimental biology | bioinformatics | bioinformatics | genetic linkage | genetic linkage | SNP mapping | SNP mapping | RNAi | RNAi | Gibson assembly | Gibson assembly | cDNA | cDNA | PCR | PCR | Primer design | Primer design | RNA extraction | RNA extraction | chemotaxis assay | chemotaxis assay | Next Generation Sequencing | Next Generation Sequencing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Epigenetics: Environment, embodiment and equality

Description

Rebecca Richmond gives a talk for the UBVO seminar series on 13th October 2016. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

Health | wellbeing | Epigenetics | genetics | Environment | Health | wellbeing | Epigenetics | genetics | Environment

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129079/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In add The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In add

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT) 7.13 Experimental Microbial Genetics (MIT)

Description

In this class, students engage in independent research projects to probe various aspects of the physiology of the bacterium Pseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials In this class, students engage in independent research projects to probe various aspects of the physiology of the bacterium Pseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials

Subjects

microbiology | microbiology | genetics | genetics | pseudomonas | pseudomonas | bacteria | bacteria | genes | genes | pathogen | pathogen | mutagenesis | mutagenesis | PCR | PCR | DNA sequencing | DNA sequencing | enzyme assays | enzyme assays | gene expression | gene expression | molecular genetics | molecular genetics | plasmid manipulation | plasmid manipulation | genetic complementation | genetic complementation | laboratory | laboratory | protocol | protocol | vector | vector | mutant | mutant | cystic fibrosis | cystic fibrosis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | geochemistry | geochemical agents | biosphere | bacterial genetics | carbon metabolism | energy metabolism | productivity | biogeochemical cycles | molecular evolution | population genetics | evolution | population growth | biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum | ecology | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | geochemistry | geochemical agents | biosphere | bacterial genetics | carbon metabolism | energy metabolism | productivity | biogeochemical cycles | molecular evolution | population genetics | evolution | population growth | biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum | ecology | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allkoreancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The gene garden

Description

The spectacular variety of colour and growth form seen in our gardens is the result of the action of thousands of genes operating in pathways and networks. However, the basic principles of genetics are very simple and this lecture will explain how genes work, how they give rise to colour and form, and how they are re-assorted during reproduction to produce new and exciting plant varieties. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

plants | botany | DNA | genetics | botanic gardens | plants | botany | DNA | genetics | botanic gardens | 2011-10-17

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129173/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Sophisticated Survival Skills of Simple Microorganisms (MIT) 7.343 Sophisticated Survival Skills of Simple Microorganisms (MIT)

Description

In this course, we will discuss the microbial physiology and genetics of stress responses in aquatic ecosystems, astrobiology, bacterial pathogenesis and other environments. We will learn about classical and novel methods utilized by researchers to uncover bacterial mechanisms induced under both general and environment-specific stresses. Finally, we will compare and contrast models for bacterial stress responses to gain an understanding of distinct mechanisms of survival and of why there are differences among bacterial genera. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly In this course, we will discuss the microbial physiology and genetics of stress responses in aquatic ecosystems, astrobiology, bacterial pathogenesis and other environments. We will learn about classical and novel methods utilized by researchers to uncover bacterial mechanisms induced under both general and environment-specific stresses. Finally, we will compare and contrast models for bacterial stress responses to gain an understanding of distinct mechanisms of survival and of why there are differences among bacterial genera. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly

Subjects

microbial physiology | microbial physiology | genetics | genetics | stress | stress | astrobiology | astrobiology | pathogenesis | pathogenesis | Escherichia coli | Escherichia coli | cyanobacteria | cyanobacteria | bleaching | bleaching | deprivation | deprivation | chlorosis | chlorosis | pollutants | pollutants | methylobacteria | methylobacteria | pathogen | pathogen | reactive oxygen species | reactive oxygen species | infection | infection | superoxides | superoxides | phage | phage | Deinococcus | Deinococcus | Raman spectroscopy | Raman spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Specific Language Impairment

Description

Dr Dianne Newbury talks about the contribution of genetics to specific language impairment. Dr Dianne Newbury is looking for the genes that predispose to Specific Language Impairment, a complex genetic disorder. Two regions, located on chromosomes 16 and 19, are linked with this disorder. Interactions between several normal genetic variants and environmental factors make certain individuals more vulnerable to language problems. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

specific language impairment | association study | genetics | cognition | specific language impairment | association study | genetics | cognition

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.020 Introduction to Biological Engineering Design (MIT) 20.020 Introduction to Biological Engineering Design (MIT)

Description

Includes audio/video content: AV special element video. This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's Includes audio/video content: AV special element video. This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's

Subjects

biology | biology | chemistry | chemistry | synthetic biology | synthetic biology | project | project | biotech | biotech | genetic engineering | genetic engineering | GMO | GMO | ethics | ethics | biomedical ethics | biomedical ethics | genetics | genetics | recombinant DNA | recombinant DNA | DNA | DNA | gene sequencing | gene sequencing | gene synthesis | gene synthesis | biohacking | biohacking | computational biology | computational biology | iGEM | iGEM | BioBrick | BioBrick | systems biology | systems biology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata