Searching for genomics : 86 results found | RSS Feed for this search

1 2 3

6.047 Computational Biology (MIT) 6.047 Computational Biology (MIT)

Description

This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets. This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets.

Subjects

Genomes | Genomes | Networks | Networks | Evolution | Evolution | computational biology | computational biology | genomics | genomics | comparative genomics | comparative genomics | epigenomics | epigenomics | functional genomics | motifs | functional genomics | motifs | phylogenomics | phylogenomics | personal genomics | personal genomics | algorithms | algorithms | machine learning | machine learning | biology | biology | biological datasets | biological datasets | proteomics | proteomics | sequence analysis | sequence analysis | sequence alignment | sequence alignment | genome assembly | genome assembly | network motifs | network motifs | network evolution | network evolution | graph algorithms | graph algorithms | phylogenetics | phylogenetics | python | python | probability | probability | statistics | statistics | entropy | entropy | information | information

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.508 Quantitative Genomics (MIT) HST.508 Quantitative Genomics (MIT)

Description

This course provides a foundation in the following four areas: evolutionary and population genetics; comparative genomics; structural genomics and proteomics; and functional genomics and regulation. This course provides a foundation in the following four areas: evolutionary and population genetics; comparative genomics; structural genomics and proteomics; and functional genomics and regulation.

Subjects

genomics | genomics | quantitative genomics | quantitative genomics | comparative genomics | comparative genomics | genes | genes | genome | genome | SNPs | SNPs | haplotypes | haplotypes | sequence alignment | sequence alignment | protein structure | protein structure | protein folding | protein folding | proteomics | proteomics | structural genomics | structural genomics | functional genomics | functional genomics | networks | networks | systems biology | systems biology | biological networks | biological networks | RNA | RNA | DNA | DNA | gene expression | gene expression | evolutionary genetics | evolutionary genetics | population genetics | population genetics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.950J Engineering Biomedical Information: From Bioinformatics to Biosurveillance (MIT) HST.950J Engineering Biomedical Information: From Bioinformatics to Biosurveillance (MIT)

Description

This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research. This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research.

Subjects

biomedical informatics | biomedical informatics | bioinformatics | bioinformatics | biomedical research | biomedical research | biological computing | biological computing | biomedical computing | biomedical computing | computational genomics | computational genomics | genomics | genomics | microarrays | microarrays | proteomics | proteomics | pharmacogenomics | pharmacogenomics | genomic privacy | genomic privacy | clinical informatics | clinical informatics | biosurveillance | biosurveillance | privacy | privacy | biotechnology | biotechnology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.881 Computational Personal Genomics: Making Sense of Complete Genomes (MIT)

Description

With the growing availability and lowering costs of genotyping and personal genome sequencing, the focus has shifted from the ability to obtain the sequence to the ability to make sense of the resulting information. This course is aimed at exploring the computational challenges associated with interpreting how sequence differences between individuals lead to phenotypic differences in gene expression, disease predisposition, or response to treatment.

Subjects

Genomes | Networks | Evolution | computational biology | genomics | comparative genomics | epigenomics | functional genomics | motifs | phylogenomics | personal genomics | algorithms | machine learning | biology | biological datasets | proteomics | sequence analysis | sequence alignment | genome assembly | network motifs | network evolution | graph algorithms | phylogenetics | python | probability | statistics | entropy | information

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.512 Genomic Medicine (MIT) HST.512 Genomic Medicine (MIT)

Description

Includes audio/video content: AV lectures. This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lec Includes audio/video content: AV lectures. This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lec

Subjects

genomics | genomics | genomic medicine | genomic medicine | genetics | genetics | genomic measurement | genomic measurement | microarray | microarray | informatics | informatics | bioinformatics | bioinformatics | computational biology | computational biology | machine learning | machine learning | pharmacogenomics | pharmacogenomics | complex traits | complex traits | individual pharmacology | individual pharmacology | cancer diagnostics | cancer diagnostics | genetic disease | genetic disease | biomedical | biomedical | genomes | genomes | bioethics | bioethics | integrative genomics | integrative genomics | genomic technologies | genomic technologies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.047 Computational Biology (MIT)

Description

This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets.

Subjects

Genomes | Networks | Evolution | computational biology | genomics | comparative genomics | epigenomics | functional genomics | motifs | phylogenomics | personal genomics | algorithms | machine learning | biology | biological datasets | proteomics | sequence analysis | sequence alignment | genome assembly | network motifs | network evolution | graph algorithms | phylogenetics | python | probability | statistics | entropy | information

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.508 Quantitative Genomics (MIT)

Description

This course provides a foundation in the following four areas: evolutionary and population genetics; comparative genomics; structural genomics and proteomics; and functional genomics and regulation.

Subjects

genomics | quantitative genomics | comparative genomics | genes | genome | SNPs | haplotypes | sequence alignment | protein structure | protein folding | proteomics | structural genomics | functional genomics | networks | systems biology | biological networks | RNA | DNA | gene expression | evolutionary genetics | population genetics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.047 Computational Biology: Genomes, Networks, Evolution (MIT) 6.047 Computational Biology: Genomes, Networks, Evolution (MIT)

Description

This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include: Genomes: biological sequence analysis, hidden Markov models, gene finding, RNA folding, sequence alignment, genome assembly Networks: gene expression analysis, regulatory motifs, graph algorithms, scale-free networks, network motifs, network evolution Evolution: comparative genomics, phylogenetics, genome duplication, genome rearrangements, evolutionary theory, rapid evolution This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include: Genomes: biological sequence analysis, hidden Markov models, gene finding, RNA folding, sequence alignment, genome assembly Networks: gene expression analysis, regulatory motifs, graph algorithms, scale-free networks, network motifs, network evolution Evolution: comparative genomics, phylogenetics, genome duplication, genome rearrangements, evolutionary theory, rapid evolution

Subjects

computational biology | computational biology | algorithms | algorithms | machine learning | machine learning | biology | biology | biological datasets | biological datasets | genomics | genomics | proteomics | proteomics | genomes | genomes | sequence analysis | sequence analysis | sequence alignment | sequence alignment | genome assembly | genome assembly | network motifs | network motifs | network evolution | network evolution | graph algorithms | graph algorithms | phylogenetics | phylogenetics | comparative genomics | comparative genomics | python | python | probability | probability | statistics | statistics | entropy | entropy | information | information

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.512 Genomic Medicine (MIT)

Description

This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lecturers begin each lecture block with a scen

Subjects

genomics | genomic medicine | genetics | genomic measurement | microarray | informatics | bioinformatics | computational biology | machine learning | pharmacogenomics | complex traits | individual pharmacology | cancer diagnostics | genetic disease | biomedical | genomes | bioethics | integrative genomics | genomic technologies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.950J Engineering Biomedical Information: From Bioinformatics to Biosurveillance (MIT)

Description

This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research.

Subjects

biomedical informatics | bioinformatics | biomedical research | biological computing | biomedical computing | computational genomics | genomics | microarrays | proteomics | pharmacogenomics | genomic privacy | clinical informatics | biosurveillance | privacy | biotechnology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.89 Topics in Computational and Systems Biology (MIT) 7.89 Topics in Computational and Systems Biology (MIT)

Description

This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB PhD program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology. Acknowledgments In addition to the staff listed on this page, the followi This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB PhD program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology. Acknowledgments In addition to the staff listed on this page, the followi

Subjects

computational | computational | systems | systems | biology | biology | seminar | seminar | literature review | literature review | statistics | statistics | developmental | developmental | biochemistry | biochemistry | genetics | genetics | physics | physics | genomics | genomics | signal transduction | signal transduction | regulation | regulation | medicine | medicine | kinetics | kinetics | protein structure | protein structure | devices | devices | synthesis | synthesis | networks | networks | mapping | mapping

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.322J Genetic Neurobiology (MIT) 9.322J Genetic Neurobiology (MIT)

Description

This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans. This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.

Subjects

neurobiology | neurobiology | genetics | genetics | bacterial chemoreception | bacterial chemoreception | neurogenomics | neurogenomics | genetic analysis | genetic analysis | axonal pathfinding | axonal pathfinding | neurodevelopment | neurodevelopment | synapse formation | synapse formation | neurogenetics | neurogenetics | higher brain function | higher brain function | neuronal ensembles | neuronal ensembles | molecular analysis | molecular analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

24.892 Classification, Natural Kinds, and Conceptual Change: Race as a Case Study (MIT) 24.892 Classification, Natural Kinds, and Conceptual Change: Race as a Case Study (MIT)

Description

This course will consider the claim that there is no such thing as race, with a particular emphasis on the question whether races should be thought of as natural kinds: is our concept of race a natural kind concept? Is the term 'race' a natural kind term? If so, is Appiah right to conclude that there are no races? How should one go about "analyzing" the concept of race? This course will consider the claim that there is no such thing as race, with a particular emphasis on the question whether races should be thought of as natural kinds: is our concept of race a natural kind concept? Is the term 'race' a natural kind term? If so, is Appiah right to conclude that there are no races? How should one go about "analyzing" the concept of race?

Subjects

Philosophy | Philosophy | race | race | natural kinds | natural kinds | classification | classification | Appiah | Appiah | naming | naming | genomics | genomics | marriage | marriage | intermarriage | intermarriage | history of science | history of science | DNA | DNA | eugenics | eugenics | biology | biology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-24.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Procardis Study; Genome wide associations with Disease

Description

Paula Boddington gives a talk on the Procardis study as part of the Oxford Bioethics Network series on Issues in Research Ethics. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

helex | genetics | bioethics network | genomics | research | oxford | ethics | law | helex | genetics | bioethics network | genomics | research | oxford | ethics | law

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129153/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Procardis Study; Genome wide associations with Disease (Slides)

Description

Paula Boddington gives a talk on the Procardis study as part of the Oxford Bioethics Network series on Issues in Research Ethics. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

helex | genetics | bioethics network | genomics | research | oxford | ethics | law | helex | genetics | bioethics network | genomics | research | oxford | ethics | law

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129153/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT) 7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | microorganisms | geochemistry | geochemistry | geochemical agents | geochemical agents | biosphere | biosphere | bacterial genetics | bacterial genetics | carbon metabolism | carbon metabolism | energy metabolism | energy metabolism | productivity | productivity | biogeochemical cycles | biogeochemical cycles | molecular evolution | molecular evolution | population genetics | population genetics | evolution | evolution | population growth | population growth | biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | ecology | ecology | communities | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Ethics and Genomic Research

Description

Paula Boddington gives a talk on ethical issues within genomics research as part of the Oxford Bioethics Network series on Issues in Research Ethics. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

helex | genetics | bioethics network | genomics | research | oxford | ethics | law | helex | genetics | bioethics network | genomics | research | oxford | ethics | law

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129153/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Ethics and Genomic Research (Slides)

Description

Paula Boddington gives a talk on ethical issues within genomics research as part of the Oxford Bioethics Network series on Issues in Research Ethics. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

helex | genetics | bioethics network | genomics | research | oxford | ethics | law | helex | genetics | bioethics network | genomics | research | oxford | ethics | law

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129153/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Oxford at Said: A human genome in minutes and what it will mean to you

Description

Oxford Nanopore is a British company, spun out of the University of Oxford in 2005 and founded on the science of Prof Hagan Bayley. It is developing new technology that has the potential to improve greatly the speed and cost of DNA sequencing. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

genome | genomics | hagan bailey | DNA sequencing | Oxford Nanopore | genome | genomics | hagan bailey | DNA sequencing | Oxford Nanopore

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129043/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.895 Computational Biology: Genomes, Networks, Evolution (MIT) 6.895 Computational Biology: Genomes, Networks, Evolution (MIT)

Description

This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include:Genomes: Biological Sequence Analysis, Hidden Markov Models, Gene Finding, RNA Folding, Sequence Alignment, Genome Assembly.Networks: Gene Expression Analysis, Regulatory Motifs, Graph Algorithms, Scale-free Networks, Network Motifs, Network Evolution.Evolution: Comparative Genomics, Phylogenetics, Genome Duplication, Genome Rearrangements, Evolutionary Theory, Rapid Evolution. This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include:Genomes: Biological Sequence Analysis, Hidden Markov Models, Gene Finding, RNA Folding, Sequence Alignment, Genome Assembly.Networks: Gene Expression Analysis, Regulatory Motifs, Graph Algorithms, Scale-free Networks, Network Motifs, Network Evolution.Evolution: Comparative Genomics, Phylogenetics, Genome Duplication, Genome Rearrangements, Evolutionary Theory, Rapid Evolution.

Subjects

Genomes: Biological sequence analysis | Genomes: Biological sequence analysis | hidden Markov models | hidden Markov models | gene finding | gene finding | RNA folding | RNA folding | sequence alignment | sequence alignment | genome assembly | genome assembly | Networks: Gene expression analysis | Networks: Gene expression analysis | regulatory motifs | regulatory motifs | graph algorithms | graph algorithms | scale-free networks | scale-free networks | network motifs | network motifs | network evolution | network evolution | Evolution: Comparative genomics | Evolution: Comparative genomics | phylogenetics | phylogenetics | genome duplication | genome duplication | genome rearrangements | genome rearrangements | evolutionary theory | evolutionary theory | rapid evolution | rapid evolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT) 7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.322J Genetic Neurobiology (MIT) 9.322J Genetic Neurobiology (MIT)

Description

This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans. This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.

Subjects

neurobiology | neurobiology | genetics | genetics | bacterial chemoreception | bacterial chemoreception | neurogenomics | neurogenomics | genetic analysis | genetic analysis | axonal pathfinding | axonal pathfinding | neurodevelopment | neurodevelopment | synapse formation | synapse formation | neurogenetics | neurogenetics | higher brain function | higher brain function | neuronal ensembles | neuronal ensembles | molecular analysis | molecular analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.508 Genomics and Computational Biology (MIT) HST.508 Genomics and Computational Biology (MIT)

Description

Includes audio/video content: AV lectures. This course will assess the relationships among sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive, functional genomics analyses. Exercises will include algorithmic, statistical, database, and simulation approaches and practical applications to medicine, biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations will be critically addressed. In addition to the regular lecture sessions, supplementary sections are scheduled to address issues related to Perl, Mathematica and biology. Includes audio/video content: AV lectures. This course will assess the relationships among sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive, functional genomics analyses. Exercises will include algorithmic, statistical, database, and simulation approaches and practical applications to medicine, biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations will be critically addressed. In addition to the regular lecture sessions, supplementary sections are scheduled to address issues related to Perl, Mathematica and biology.

Subjects

sequence | sequence | structure | structure | function | function | complex biological networks | complex biological networks | quantative modeling | quantative modeling | functional genomics analyses | functional genomics analyses | algorithms | algorithms | statistics | statistics | database | database | simulation | simulation | applied medicine | applied medicine | biotechnology | biotechnology | drug discovery | drug discovery | computational biology | computational biology | genetic engineering | genetic engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata