Searching for hidden Markov models : 7 results found | RSS Feed for this search

6.895 Computational Biology: Genomes, Networks, Evolution (MIT) 6.895 Computational Biology: Genomes, Networks, Evolution (MIT)

Description

This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include:Genomes: Biological Sequence Analysis, Hidden Markov Models, Gene Finding, RNA Folding, Sequence Alignment, Genome Assembly.Networks: Gene Expression Analysis, Regulatory Motifs, Graph Algorithms, Scale-free Networks, Network Motifs, Network Evolution.Evolution: Comparative Genomics, Phylogenetics, Genome Duplication, Genome Rearrangements, Evolutionary Theory, Rapid Evolution. This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include:Genomes: Biological Sequence Analysis, Hidden Markov Models, Gene Finding, RNA Folding, Sequence Alignment, Genome Assembly.Networks: Gene Expression Analysis, Regulatory Motifs, Graph Algorithms, Scale-free Networks, Network Motifs, Network Evolution.Evolution: Comparative Genomics, Phylogenetics, Genome Duplication, Genome Rearrangements, Evolutionary Theory, Rapid Evolution.

Subjects

Genomes: Biological sequence analysis | Genomes: Biological sequence analysis | hidden Markov models | hidden Markov models | gene finding | gene finding | RNA folding | RNA folding | sequence alignment | sequence alignment | genome assembly | genome assembly | Networks: Gene expression analysis | Networks: Gene expression analysis | regulatory motifs | regulatory motifs | graph algorithms | graph algorithms | scale-free networks | scale-free networks | network motifs | network motifs | network evolution | network evolution | Evolution: Comparative genomics | Evolution: Comparative genomics | phylogenetics | phylogenetics | genome duplication | genome duplication | genome rearrangements | genome rearrangements | evolutionary theory | evolutionary theory | rapid evolution | rapid evolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.867 Machine Learning (MIT) 6.867 Machine Learning (MIT)

Description

6.867 is an introductory course on machine learning which provides an overview of many techniques and algorithms in machine learning, beginning with topics such as simple perceptrons and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course gives the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how and why they work. The underlying theme in the course is statistical inference as this provides the foundation for most of the methods covered.  6.867 is an introductory course on machine learning which provides an overview of many techniques and algorithms in machine learning, beginning with topics such as simple perceptrons and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course gives the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how and why they work. The underlying theme in the course is statistical inference as this provides the foundation for most of the methods covered. 

Subjects

machine learning | machine learning | perceptrons | perceptrons | boosting | boosting | support vector machines | support vector machines | Markov | Markov | hidden Markov models | hidden Markov models | HMM | HMM | Bayesian networks | Bayesian networks | statistical inference | statistical inference | regression | regression | clustering | clustering | bias | bias | variance | variance | regularization | regularization | Generalized Linear Models | Generalized Linear Models | neural networks | neural networks | Support Vector Machine | Support Vector Machine | SVM | SVM | mixture models | mixture models | kernel density estimation | kernel density estimation | gradient descent | gradient descent | quadratic programming | quadratic programming | EM algorithm | EM algorithm | orward-backward algorithm | orward-backward algorithm | junction tree algorithm | junction tree algorithm | Gibbs sampling | Gibbs sampling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.867 Machine Learning (MIT) 6.867 Machine Learning (MIT)

Description

6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered. 6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered.

Subjects

machine learning algorithms | machine learning algorithms | statistical inference | statistical inference | representation | representation | generalization | generalization | model selection | model selection | linear/additive models | linear/additive models | active learning | active learning | boosting | boosting | support vector machines | support vector machines | hidden Markov models | hidden Markov models | Bayesian networks | Bayesian networks | classification | classification | linear regression | linear regression | modern machine learning methods | modern machine learning methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.867 Machine Learning (MIT)

Description

6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered.

Subjects

machine learning algorithms | statistical inference | representation | generalization | model selection | linear/additive models | active learning | boosting | support vector machines | hidden Markov models | Bayesian networks | classification | linear regression | modern machine learning methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.895 Computational Biology: Genomes, Networks, Evolution (MIT)

Description

This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include:Genomes: Biological Sequence Analysis, Hidden Markov Models, Gene Finding, RNA Folding, Sequence Alignment, Genome Assembly.Networks: Gene Expression Analysis, Regulatory Motifs, Graph Algorithms, Scale-free Networks, Network Motifs, Network Evolution.Evolution: Comparative Genomics, Phylogenetics, Genome Duplication, Genome Rearrangements, Evolutionary Theory, Rapid Evolution.

Subjects

Genomes: Biological sequence analysis | hidden Markov models | gene finding | RNA folding | sequence alignment | genome assembly | Networks: Gene expression analysis | regulatory motifs | graph algorithms | scale-free networks | network motifs | network evolution | Evolution: Comparative genomics | phylogenetics | genome duplication | genome rearrangements | evolutionary theory | rapid evolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.867 Machine Learning (MIT)

Description

6.867 is an introductory course on machine learning which provides an overview of many techniques and algorithms in machine learning, beginning with topics such as simple perceptrons and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course gives the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how and why they work. The underlying theme in the course is statistical inference as this provides the foundation for most of the methods covered. 

Subjects

machine learning | perceptrons | boosting | support vector machines | Markov | hidden Markov models | HMM | Bayesian networks | statistical inference | regression | clustering | bias | variance | regularization | Generalized Linear Models | neural networks | Support Vector Machine | SVM | mixture models | kernel density estimation | gradient descent | quadratic programming | EM algorithm | orward-backward algorithm | junction tree algorithm | Gibbs sampling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.867 Machine Learning (MIT)

Description

6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered.

Subjects

machine learning algorithms | statistical inference | representation | generalization | model selection | linear/additive models | active learning | boosting | support vector machines | hidden Markov models | Bayesian networks | classification | linear regression | modern machine learning methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata