Searching for icon : 299 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12

6.772 Compound Semiconductor Devices (MIT) 6.772 Compound Semiconductor Devices (MIT)

Description

This course outlines the physics, modeling, application, and technology of compound semiconductors (primarily III-Vs) in electronic, optoelectronic, and photonic devices and integrated circuits. Topics include: properties, preparation, and processing of compound semiconductors; theory and practice of heterojunctions, quantum structures, and pseudomorphic strained layers; metal-semiconductor field effect transistors (MESFETs); heterojunction field effect transistors (HFETs) and bipolar transistors (HBTs); photodiodes, vertical-and in-plane-cavity laser diodes, and other optoelectronic devices. This course outlines the physics, modeling, application, and technology of compound semiconductors (primarily III-Vs) in electronic, optoelectronic, and photonic devices and integrated circuits. Topics include: properties, preparation, and processing of compound semiconductors; theory and practice of heterojunctions, quantum structures, and pseudomorphic strained layers; metal-semiconductor field effect transistors (MESFETs); heterojunction field effect transistors (HFETs) and bipolar transistors (HBTs); photodiodes, vertical-and in-plane-cavity laser diodes, and other optoelectronic devices.

Subjects

physics | physics | modeling | modeling | application | application | technology of compound semiconductors | technology of compound semiconductors | electronic | electronic | optoelectronic | optoelectronic | photonic devices | photonic devices | integrated circuits | integrated circuits | properties | properties | heterojunctions | heterojunctions | quantum structures | quantum structures | pseudomorphic strained layers | pseudomorphic strained layers | metal-semiconductor field effect transistors (MESFETs) | metal-semiconductor field effect transistors (MESFETs) | heterojunction field effect transistors (HFETs) | heterojunction field effect transistors (HFETs) | bipolar transistors (HBTs) | bipolar transistors (HBTs) | photodiodes | photodiodes | laser diodes | laser diodes | optoelectronic devices | optoelectronic devices | applications | applications | compound semiconductors | compound semiconductors | electronic devices | electronic devices | compound semiconductor processing | compound semiconductor processing | metal-semiconductor field effect transistors | metal-semiconductor field effect transistors | MESFET | MESFET | heterojunction field effect transistors | heterojunction field effect transistors | HFET | HFET | bipolar transistors | bipolar transistors | HBT | HBT | vertical-cavity laser diodes | vertical-cavity laser diodes | in-plane-cavity laser diodes | in-plane-cavity laser diodes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

CMS.405 Media and Methods: Seeing and Expression (MIT) CMS.405 Media and Methods: Seeing and Expression (MIT)

Description

In this course students create digital visual images and analyze designs from historical and theoretical perspectives with an emphasis on art and design, examining visual experience in broad terms, and from the perspectives of both creators and viewers. The course addresses key topics such as: image making as a cognitive and perceptual practice, the production of visual significance and meaning, and the role of technology in creating and understanding digitally produced images. Students will be given design problems growing out of their reading and present solutions using technologies such as the Adobe Creative Suite and/or similar applications. In this course students create digital visual images and analyze designs from historical and theoretical perspectives with an emphasis on art and design, examining visual experience in broad terms, and from the perspectives of both creators and viewers. The course addresses key topics such as: image making as a cognitive and perceptual practice, the production of visual significance and meaning, and the role of technology in creating and understanding digitally produced images. Students will be given design problems growing out of their reading and present solutions using technologies such as the Adobe Creative Suite and/or similar applications.

Subjects

media | media | design | design | visual design | visual design | visual literacy | visual literacy | comics | comics | semiotics | semiotics | sequential art | sequential art | signs | signs | shapes | shapes | patterns | patterns | augury | augury | cognition | cognition | creativity | creativity | psychology | psychology | image | image | imago | imago | mimesis | mimesis | representation | representation | icon | icon | iconology | iconology | iconoclasm | iconoclasm | iconogasm | iconogasm | gestalt | gestalt | ideology | ideology | text | text | shahrazad | shahrazad | myth | myth | mythos | mythos | mythology | mythology | typography | typography | type | type | information design | information design | color | color | space | space | visual culture | visual culture | digital media | digital media

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.720J Integrated Microelectronic Devices (MIT) 6.720J Integrated Microelectronic Devices (MIT)

Description

6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points. Acknowledgments Prof. Jesús del Alamo would like to thank Prof. Harry Tuller for his support of and help in teaching the course. 6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points. Acknowledgments Prof. Jesús del Alamo would like to thank Prof. Harry Tuller for his support of and help in teaching the course.

Subjects

integrated microelectronic devices | integrated microelectronic devices | physics | physics | silicon | silicon | circuit | circuit | semiconductor | semiconductor | p-n junction | p-n junction | metal-oxide semiconductor structure | metal-oxide semiconductor structure | metal-semiconductor junction | metal-semiconductor junction | MOS field-effect transistor | MOS field-effect transistor | bipolar junction transistor | bipolar junction transistor | energy band diagram | energy band diagram | short-channel MOSFET | short-channel MOSFET | device characterization | device characterization | device design | device design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.720J Integrated Microelectronic Devices (MIT) 6.720J Integrated Microelectronic Devices (MIT)

Description

6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points. 6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points.

Subjects

integrated microelectronic devices | integrated microelectronic devices | physics | physics | silicon | silicon | circuit | circuit | semiconductor | semiconductor | p-n junction | p-n junction | metal-oxide semiconductor structure | metal-oxide semiconductor structure | metal-semiconductor junction | metal-semiconductor junction | MOS field-effect transistor | MOS field-effect transistor | bipolar junction transistor | bipolar junction transistor | energy band diagram | energy band diagram | short-channel MOSFET | short-channel MOSFET | device characterization | device characterization | device design | device design | 6.720 | 6.720 | 3.43 | 3.43

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.772 Compound Semiconductor Devices (MIT)

Description

This course outlines the physics, modeling, application, and technology of compound semiconductors (primarily III-Vs) in electronic, optoelectronic, and photonic devices and integrated circuits. Topics include: properties, preparation, and processing of compound semiconductors; theory and practice of heterojunctions, quantum structures, and pseudomorphic strained layers; metal-semiconductor field effect transistors (MESFETs); heterojunction field effect transistors (HFETs) and bipolar transistors (HBTs); photodiodes, vertical-and in-plane-cavity laser diodes, and other optoelectronic devices.

Subjects

physics | modeling | application | technology of compound semiconductors | electronic | optoelectronic | photonic devices | integrated circuits | properties | heterojunctions | quantum structures | pseudomorphic strained layers | metal-semiconductor field effect transistors (MESFETs) | heterojunction field effect transistors (HFETs) | bipolar transistors (HBTs) | photodiodes | laser diodes | optoelectronic devices | applications | compound semiconductors | electronic devices | compound semiconductor processing | metal-semiconductor field effect transistors | MESFET | heterojunction field effect transistors | HFET | bipolar transistors | HBT | vertical-cavity laser diodes | in-plane-cavity laser diodes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.772 Compound Semiconductor Devices (MIT)

Description

This course outlines the physics, modeling, application, and technology of compound semiconductors (primarily III-Vs) in electronic, optoelectronic, and photonic devices and integrated circuits. Topics include: properties, preparation, and processing of compound semiconductors; theory and practice of heterojunctions, quantum structures, and pseudomorphic strained layers; metal-semiconductor field effect transistors (MESFETs); heterojunction field effect transistors (HFETs) and bipolar transistors (HBTs); photodiodes, vertical-and in-plane-cavity laser diodes, and other optoelectronic devices.

Subjects

physics | modeling | application | technology of compound semiconductors | electronic | optoelectronic | photonic devices | integrated circuits | properties | heterojunctions | quantum structures | pseudomorphic strained layers | metal-semiconductor field effect transistors (MESFETs) | heterojunction field effect transistors (HFETs) | bipolar transistors (HBTs) | photodiodes | laser diodes | optoelectronic devices | applications | compound semiconductors | electronic devices | compound semiconductor processing | metal-semiconductor field effect transistors | MESFET | heterojunction field effect transistors | HFET | bipolar transistors | HBT | vertical-cavity laser diodes | in-plane-cavity laser diodes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

CMS.405 Media and Methods: Seeing and Expression (MIT)

Description

In this course students create digital visual images and analyze designs from historical and theoretical perspectives with an emphasis on art and design, examining visual experience in broad terms, and from the perspectives of both creators and viewers. The course addresses key topics such as: image making as a cognitive and perceptual practice, the production of visual significance and meaning, and the role of technology in creating and understanding digitally produced images. Students will be given design problems growing out of their reading and present solutions using technologies such as the Adobe Creative Suite and/or similar applications.

Subjects

media | design | visual design | visual literacy | comics | semiotics | sequential art | signs | shapes | patterns | augury | cognition | creativity | psychology | image | imago | mimesis | representation | icon | iconology | iconoclasm | iconogasm | gestalt | ideology | text | shahrazad | myth | mythos | mythology | typography | type | information design | color | space | visual culture | digital media

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.22 Mechanical Behavior of Materials (MIT) 3.22 Mechanical Behavior of Materials (MIT)

Description

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications. Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications.

Subjects

Phenomenology | Phenomenology | mechanical behavior | mechanical behavior | material structure | material structure | deformation | deformation | failure | failure | elasticity | elasticity | viscoelasticity | viscoelasticity | plasticity | plasticity | creep | creep | fracture | fracture | fatigue | fatigue | metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | thin films | thin films | carbon nanotubes | carbon nanotubes | battery materials | battery materials | superelastic alloys | superelastic alloys | defect nucleation | defect nucleation | student projects | student projects | viral capsides | viral capsides

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.225 Electronic and Mechanical Properties of Materials (MIT) 3.225 Electronic and Mechanical Properties of Materials (MIT)

Description

This course covers the fundamental concepts that determine the electrical, optical, magnetic and mechanical properties of metals, semiconductors, ceramics and polymers. The roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties are discussed. Also included are case studies drawn from a variety of applications: semiconductor diodes and optical detectors, sensors, thin films, biomaterials, composites and cellular materials, and others. This course covers the fundamental concepts that determine the electrical, optical, magnetic and mechanical properties of metals, semiconductors, ceramics and polymers. The roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties are discussed. Also included are case studies drawn from a variety of applications: semiconductor diodes and optical detectors, sensors, thin films, biomaterials, composites and cellular materials, and others.

Subjects

metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | bonding | bonding | structure | structure | energy band | energy band | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | optical detectors | optical detectors | sensors | sensors | thin films | thin films | biomaterials | biomaterials | cellular materials | cellular materials | magnetism | magnetism | polarity | polarity | viscoelasticity | viscoelasticity | plasticity | plasticity | fracture | fracture | materials selection | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.720J Integrated Microelectronic Devices (MIT)

Description

6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points.

Subjects

integrated microelectronic devices | physics | silicon | circuit | semiconductor | p-n junction | metal-oxide semiconductor structure | metal-semiconductor junction | MOS field-effect transistor | bipolar junction transistor | energy band diagram | short-channel MOSFET | device characterization | device design | 6.720 | 3.43

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT) 6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits.

Subjects

semiconductor | semiconductor | integrated circuit | integrated circuit | p-n junction | p-n junction | mos | mos | mosfet | mosfet | digital logic | digital logic | nmos | nmos | cmos | cmos | bipolar junction transistor | bipolar junction transistor | single stage amplifier | single stage amplifier | frequency domain analysis | frequency domain analysis | common emitter | common emitter | multistage amplifier | multistage amplifier | intrinsic semiconductors | intrinsic semiconductors | electrons | electrons | holes | holes | carrier transport | carrier transport | 60mV rule | 60mV rule

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.720J Integrated Microelectronic Devices (MIT)

Description

6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points. Acknowledgments Prof. Jess del Alamo would like to thank Prof. Harry Tuller for his support of and help in teaching the course.

Subjects

integrated microelectronic devices | physics | silicon | circuit | semiconductor | p-n junction | metal-oxide semiconductor structure | metal-semiconductor junction | MOS field-effect transistor | bipolar junction transistor | energy band diagram | short-channel MOSFET | device characterization | device design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT) 6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and metal-on-silicon (MOS) devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and metal-on-silicon (MOS) devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits.

Subjects

semiconductor | semiconductor | integrated circuit | integrated circuit | p-n junction | p-n junction | mos | mos | mosfet | mosfet | digital logic | digital logic | nmos | nmos | cmos | cmos | bipolar junction transistor | bipolar junction transistor | single stage amplifier | single stage amplifier | frequency domain analysis | frequency domain analysis | common emitter | common emitter | multistage amplifier | multistage amplifier | intrinsic semiconductors | intrinsic semiconductors | electrons | electrons | holes | holes | carrier transport | carrier transport | 60mV rule | 60mV rule

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.720J Integrated Microelectronic Devices (MIT)

Description

6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points. Acknowledgments Prof. Jess del Alamo would like to thank Prof. Harry Tuller for his support of and help in teaching the course.

Subjects

integrated microelectronic devices | physics | silicon | circuit | semiconductor | p-n junction | metal-oxide semiconductor structure | metal-semiconductor junction | MOS field-effect transistor | bipolar junction transistor | energy band diagram | short-channel MOSFET | device characterization | device design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

CMS.405 Media and Methods: Seeing and Expression (MIT)

Description

In this course students create digital visual images and analyze designs from historical and theoretical perspectives with an emphasis on art and design, examining visual experience in broad terms, and from the perspectives of both creators and viewers. The course addresses key topics such as: image making as a cognitive and perceptual practice, the production of visual significance and meaning, and the role of technology in creating and understanding digitally produced images. Students will be given design problems growing out of their reading and present solutions using technologies such as the Adobe Creative Suite and/or similar applications.

Subjects

media | design | visual design | visual literacy | comics | semiotics | sequential art | signs | shapes | patterns | augury | cognition | creativity | psychology | image | imago | mimesis | representation | icon | iconology | iconoclasm | iconogasm | gestalt | ideology | text | shahrazad | myth | mythos | mythology | typography | type | information design | color | space | visual culture | digital media

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.977 Semiconductor Optoelectronics: Theory and Design (MIT) 6.977 Semiconductor Optoelectronics: Theory and Design (MIT)

Description

6.977 focuses on the physics of the interaction of photons with semiconductor materials. The band theory of solids is used to calculate the absorption and gain of semiconductor media. The rate equation formalism is used to develop the concepts of laser threshold, population inversion and modulation response. Matrix methods and coupled mode theory are applied to resonator structures such as distributed feedback lasers, tunable lasers and microring devices. The course is also intended to introduce students to noise models for semiconductor devices and to applications of optoelectronic devices to fiber optic communications. This course is worth 12 Engineering Design points. 6.977 focuses on the physics of the interaction of photons with semiconductor materials. The band theory of solids is used to calculate the absorption and gain of semiconductor media. The rate equation formalism is used to develop the concepts of laser threshold, population inversion and modulation response. Matrix methods and coupled mode theory are applied to resonator structures such as distributed feedback lasers, tunable lasers and microring devices. The course is also intended to introduce students to noise models for semiconductor devices and to applications of optoelectronic devices to fiber optic communications. This course is worth 12 Engineering Design points.

Subjects

semiconductor optoelectronics | semiconductor optoelectronics | photons | photons | semiconductor | semiconductor | band theory of solids | band theory of solids | rate equation formalism | rate equation formalism | laser threshold | laser threshold | population inversion | population inversion | modulation response | modulation response | Matrix methods | Matrix methods | coupled mode theory | coupled mode theory | resonator structures | resonator structures | distributed feedback lasers | distributed feedback lasers | tunable lasers | tunable lasers | microring devices | microring devices | noise models | noise models | optoelectronics | optoelectronics | fiber optic communications | fiber optic communications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.22 Mechanical Properties of Materials (MIT) 3.22 Mechanical Properties of Materials (MIT)

Description

This course explores the phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples are drawn from structural and functional applications that include a variety of material classes: metals, ceramics, polymers, thin films, composites, and cellular materials. This course explores the phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples are drawn from structural and functional applications that include a variety of material classes: metals, ceramics, polymers, thin films, composites, and cellular materials.

Subjects

metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | bonding | bonding | structure | structure | energy band | energy band | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | optical detectors | optical detectors | sensors | sensors | thin films | thin films | biomaterials | biomaterials | cellular materials | cellular materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.225 Electronic and Mechanical Properties of Materials (MIT) 3.225 Electronic and Mechanical Properties of Materials (MIT)

Description

Electrical, optical, magnetic, and mechanical properties of metals, semiconductors, ceramics, and polymers. Discussion of roles of bonding, structure (crystalline, defect, energy band, and microstructure), and composition in influencing and controlling physical properties. Case studies drawn from a variety of applications including semiconductor diodes, optical detectors, sensors, thin films, biomaterials, composites, and cellular materials. Electrical, optical, magnetic, and mechanical properties of metals, semiconductors, ceramics, and polymers. Discussion of roles of bonding, structure (crystalline, defect, energy band, and microstructure), and composition in influencing and controlling physical properties. Case studies drawn from a variety of applications including semiconductor diodes, optical detectors, sensors, thin films, biomaterials, composites, and cellular materials.

Subjects

metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | bonding | bonding | energy band | energy band | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | optical detectors | optical detectors | sensors | sensors | thin films | thin films | biomaterials | biomaterials | cellular materials | cellular materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

View of the Tyne Bridge from Gateshead

Description

Subjects

tynebridge | tyneside | northeastengland | bridges | newcastleupontyne | gateshead | civilengineering | blackandwhitephotograph | girders | construction | iconic | cranes | rivertyne | industrialheritage | northeastofengland | unitedkingdom | archives | documentation | crossing | bridge | industry | digitalimage | progress | progression | production | structure | land | bank | river | water | 6march1928 | northeast | icon | landmark | iconiclandmark | jamesbaconsons | newcastle | march1927tooctober1928 | jamesgeddie | chiefassistantengineer | dormanlongcoltd | middlesbrough | fascinating | impressive | unusual | outstanding | label | number | identification | debris | slope | grain | sky | mark | buildings | wall | roof | door | building | vessel | maritimeheritage | shipbuildingheritage | abstract | blur | deck | transportation | infrastructure | chimney | smoke | panel | reflection | window | containers | pile | buildingthetynebridge

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

View of the Tyne Bridge from Gateshead

Description

View of the Tyne Bridge from Gateshead, as work on its construction continues, 6 March 1928 (TWAM ref. 3730/15/16). The Tyne Bridge is one of the North East?s most iconic landmarks. These photographs were taken by James Bacon & Sons of Newcastle and document its construction from March 1927 to October 1928. They belonged to James Geddie, who was Chief Assistant Engineer on the construction of the Bridge with Dorman, Long & Co. Ltd. of Middlesbrough. (Copyright) We're happy for you to share this digital image within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.uk.

Subjects

tynebridge | tyneside | northeastengland | bridges | newcastleupontyne | gateshead | civilengineering | blackandwhitephotograph | girders | construction | iconic | cranes | rivertyne | industrialheritage | northeastofengland | unitedkingdom | archives | documentation | crossing | bridge | industry | digitalimage | progress | progression | production | structure | land | bank | river | water | 6march1928 | northeast | icon | landmark | iconiclandmark | jamesbaconsons | newcastle | march1927tooctober1928 | jamesgeddie | chiefassistantengineer | dormanlongcoltd | middlesbrough | fascinating | impressive | unusual | outstanding | label | number | identification | debris | slope | grain | sky | mark | buildings | wall | roof | door | building | vessel | maritimeheritage | shipbuildingheritage | abstract | blur | deck | transportation | infrastructure | chimney | smoke | panel | reflection | window | containers | pile | buildingthetynebridge

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Silicon Nitride-bonded Silicon Carbide

Description

Silicon Nitride bonded Silicon Carbide is characterized by excellent wear properties, good resistance to high temperatures, good impact resistance, an ability to be easily cast, and good corrosion resistance.

Subjects

ceramic | silicon carbide | silicon nitride | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Silicon Carbide from within a Silicon Nitride-bonded Silicon Carbide sample

Description

Silicon Nitride bonded Silicon Carbide is characterized by excellent wear properties, good resistance to high temperatures, good impact resistance, an ability to be easily cast, and good corrosion resistance.

Subjects

ceramic | silicon carbide | silicon nitride | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Apollo 17 Pacific Recovery Area Apollo 17 Pacific Recovery Area

Description

Subjects

recovery | recovery | americansamoa | americansamoa | apollo17 | apollo17 | ussticonderoga | ussticonderoga | eugenecernan | eugenecernan | harrisonschmitt | harrisonschmitt | ronaldevans | ronaldevans

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The Newcastle side of the Tyne Bridge

Description

Subjects

tynebridge | tyneside | northeastengland | bridges | newcastleupontyne | gateshead | civilengineering | blackandwhitephotograph | girders | construction | iconic | guildhall | sandhill | quayside | rivertyne | rivers | digitalimage | archives | industry | industrialheritage | maritimeheritage | shipbuildingheritage | buildings | structure | bridge | crossing | river | bank | land | buildingthetynebridge | northeastofengland | unitedkingdom | newcastle | newcastleside | development | progress | progression | 2february1928 | city | urban | northeast | iconiclandmark | jamesbaconsons | march1927tooctober1928 | jamesgeddie | chiefassistantengineer | dormanlongcoltd | middlesbrough | impressive | magnificent | unusual | fascinating | interesting | vessel | daylight | shadow | window | wall | roof | chimney | smoke | sky | grain | blur | mark | debris | components | pile | crane | vehicle | transportation | infrastructure | economy | jobs | workers

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits.

Subjects

semiconductor | integrated circuit | p-n junction | mos | mosfet | digital logic | nmos | cmos | bipolar junction transistor | single stage amplifier | frequency domain analysis | common emitter | multistage amplifier | intrinsic semiconductors | electrons | holes | carrier transport | 60mV rule

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata