Searching for impurities : 13 results found | RSS Feed for this search

8.231 Physics of Solids I (MIT) 8.231 Physics of Solids I (MIT)

Description

The topics covered in this course include:Periodic Structure and Symmetry of CrystalsDiffraction, Reciprocal LatticeChemical BondingLattice DynamicsPhononsThermal PropertiesFree Electron GasModel of MetalsBloch Theorem and Band StructureNearly Free Electron ApproximationTight Binding MethodFermi SurfaceSemiconductorsElectronsHolesImpuritiesOptical PropertiesExcitons andMagnetism The topics covered in this course include:Periodic Structure and Symmetry of CrystalsDiffraction, Reciprocal LatticeChemical BondingLattice DynamicsPhononsThermal PropertiesFree Electron GasModel of MetalsBloch Theorem and Band StructureNearly Free Electron ApproximationTight Binding MethodFermi SurfaceSemiconductorsElectronsHolesImpuritiesOptical PropertiesExcitons andMagnetismSubjects

periodic structure and symmetry of crystals | periodic structure and symmetry of crystals | diffraction | diffraction | reciprocal lattice | reciprocal lattice | chemical bonding | chemical bonding | phonons | phonons | thermal properties | thermal properties | free electron gas | free electron gas | model of metals | model of metals | Bloch theorem and band structure | Bloch theorem and band structure | nearly free electron approximation | nearly free electron approximation | tight binding method | tight binding method | Fermi surface | Fermi surface | semiconductors | semiconductors | electrons | electrons | holes | holes | impurities | impurities | optical properties | optical properties | excitons | excitons | magnetism | magnetismLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.231 Physics of Solids I (MIT) 8.231 Physics of Solids I (MIT)

Description

This course offers an introduction to the basic concepts of the quantum theory of solids. This course offers an introduction to the basic concepts of the quantum theory of solids.Subjects

periodic structure | periodic structure | symmetry of crystals | symmetry of crystals | diffraction | diffraction | reciprocal lattice | reciprocal lattice | chemical bonding | chemical bonding | lattice dynamics | lattice dynamics | phonons | phonons | thermal properties | thermal properties | free electron gas | free electron gas | model of metals | model of metals | Bloch theorem | Bloch theorem | band structure | band structure | nearly free electron approximation | nearly free electron approximation | tight binding method | tight binding method | Fermi surface | Fermi surface | semiconductors | semiconductors | electrons | electrons | holes | holes | impurities | impurities | optical properties | optical properties | excitons | excitons | magnetism. | magnetism.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

In this course we shall develop theoretical methods suitable for the description of the many-body phenomena, such as Hamiltonian second-quantized operator formalism, Greens functions, path integral, functional integral, and the quantum kinetic equation. The concepts to be introduced include, but are not limited to, the random phase approximation, the mean field theory (aka saddle-point, or semiclassical approximation), the tunneling dynamics in imaginary time, instantons, Berry phase, coherent state path integral, renormalization group. In this course we shall develop theoretical methods suitable for the description of the many-body phenomena, such as Hamiltonian second-quantized operator formalism, Greens functions, path integral, functional integral, and the quantum kinetic equation. The concepts to be introduced include, but are not limited to, the random phase approximation, the mean field theory (aka saddle-point, or semiclassical approximation), the tunneling dynamics in imaginary time, instantons, Berry phase, coherent state path integral, renormalization group.Subjects

condensed matter systems | condensed matter systems | low-dimension magnetic and electronic systems | low-dimension magnetic and electronic systems | disorder and quantum transport | disorder and quantum transport | magnetic impurities | magnetic impurities | the Kondo problem | the Kondo problem | quantum spin systems | quantum spin systems | the Hubbard model | the Hubbard model | high temperature superconductors | high temperature superconductors | Bose Condensates | Bose Condensates | Quasiparticles | Quasiparticles | Collective Modes | Collective Modes | Superfluidity | Superfluidity | Vortices | Vortices | Fermi Gases | Fermi Gases | Fermi Liquids | Fermi Liquids | Collective Excitations | Collective Excitations | Cooper Pairing | Cooper Pairing | BCS Theory | BCS Theory | Off-diagonal Long-range Order | Off-diagonal Long-range Order | Superconductivity | Superconductivity | Atom Interacting | Atom Interacting | Optical Fields | Optical Fields | Lamb Shift | Lamb Shift | Casimir Effect | Casimir Effect | Dicke Superradiance | Dicke Superradiance | Quantum Transport | Quantum Transport | Wave Scattering | Wave Scattering | Disordered Media | Disordered Media | Localization | Localization | Tunneling | Tunneling | Instantons | Instantons | Macroscopic Quantum Systems | Macroscopic Quantum Systems | Coupling | Coupling | Thermal Bath | Thermal Bath | Spin-boson Model | Spin-boson Model | Kondo Effect | Kondo Effect | Spin Dynamics | Spin Dynamics | Gases Transport | Gases Transport | Solids Transport | Solids Transport | Cold Atoms | Cold Atoms | Optical Lattices | Optical Lattices | Quantum Theory | Quantum Theory | Photodetection | Photodetection | Electric Noise | Electric NoiseLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

In this course we shall develop theoretical methods suitable for the description of the many-body phenomena, such as Hamiltonian second-quantized operator formalism, Greens functions, path integral, functional integral, and the quantum kinetic equation. The concepts to be introduced include, but are not limited to, the random phase approximation, the mean field theory (aka saddle-point, or semiclassical approximation), the tunneling dynamics in imaginary time, instantons, Berry phase, coherent state path integral, renormalization group. In this course we shall develop theoretical methods suitable for the description of the many-body phenomena, such as Hamiltonian second-quantized operator formalism, Greens functions, path integral, functional integral, and the quantum kinetic equation. The concepts to be introduced include, but are not limited to, the random phase approximation, the mean field theory (aka saddle-point, or semiclassical approximation), the tunneling dynamics in imaginary time, instantons, Berry phase, coherent state path integral, renormalization group.Subjects

condensed matter systems | condensed matter systems | low-dimension magnetic and electronic systems | low-dimension magnetic and electronic systems | disorder and quantum transport | disorder and quantum transport | magnetic impurities | magnetic impurities | the Kondo problem | the Kondo problem | quantum spin systems | quantum spin systems | the Hubbard model | the Hubbard model | high temperature superconductors | high temperature superconductors | Bose Condensates | Bose Condensates | Quasiparticles | Quasiparticles | Collective Modes | Collective Modes | Superfluidity | Superfluidity | Vortices | Vortices | Fermi Gases | Fermi Gases | Fermi Liquids | Fermi Liquids | Collective Excitations | Collective Excitations | Cooper Pairing | Cooper Pairing | BCS Theory | BCS Theory | Off-diagonal Long-range Order | Off-diagonal Long-range Order | Superconductivity | Superconductivity | Atom Interacting | Atom Interacting | Optical Fields | Optical Fields | Lamb Shift | Lamb Shift | Casimir Effect | Casimir Effect | Dicke Superradiance | Dicke Superradiance | Quantum Transport | Quantum Transport | Wave Scattering | Wave Scattering | Disordered Media | Disordered Media | Localization | Localization | Tunneling | Tunneling | Instantons | Instantons | Macroscopic Quantum Systems | Macroscopic Quantum Systems | Coupling | Coupling | Thermal Bath | Thermal Bath | Spin-boson Model | Spin-boson Model | Kondo Effect | Kondo Effect | Spin Dynamics | Spin Dynamics | Gases Transport | Gases Transport | Solids Transport | Solids Transport | Cold Atoms | Cold Atoms | Optical Lattices | Optical Lattices | Quantum Theory | Quantum Theory | Photodetection | Photodetection | Electric Noise | Electric NoiseLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.514 Strongly Correlated Systems in Condensed Matter Physics (MIT)

Description

In this course we shall develop theoretical methods suitable for the description of the many-body phenomena, such as Hamiltonian second-quantized operator formalism, Greens functions, path integral, functional integral, and the quantum kinetic equation. The concepts to be introduced include, but are not limited to, the random phase approximation, the mean field theory (aka saddle-point, or semiclassical approximation), the tunneling dynamics in imaginary time, instantons, Berry phase, coherent state path integral, renormalization group.Subjects

condensed matter systems | low-dimension magnetic and electronic systems | disorder and quantum transport | magnetic impurities | the Kondo problem | quantum spin systems | the Hubbard model | high temperature superconductors | Bose Condensates | Quasiparticles | Collective Modes | Superfluidity | Vortices | Fermi Gases | Fermi Liquids | Collective Excitations | Cooper Pairing | BCS Theory | Off-diagonal Long-range Order | Superconductivity | Atom Interacting | Optical Fields | Lamb Shift | Casimir Effect | Dicke Superradiance | Quantum Transport | Wave Scattering | Disordered Media | Localization | Tunneling | Instantons | Macroscopic Quantum Systems | Coupling | Thermal Bath | Spin-boson Model | Kondo Effect | Spin Dynamics | Gases Transport | Solids Transport | Cold Atoms | Optical Lattices | Quantum Theory | Photodetection | Electric NoiseLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataTALAT Lecture 3202: The Liquid Metal

Description

This lecture provides an introduction to factors affecting the quality of molten aluminium. Basic knowledge of foundry practice is assumed. The student should be able to appreciate the differences between good and bad melting practices in a foundry.Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | machining | forming | casting | impurities | oxide pollution | hydrogen pollution | pollutants | oxide inclusions | purge degassing | flux degassing | rotary degassing | cosworht casting process | low inclusions | lost crucible process | melt quality | reduced pressure test | gas content | inclusion content | corematerials | ukoer | Engineering | H000License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataTALAT Lecture 3205: The Fluidity of Molten Metals

Description

This lecture introduces the concept of fluidity of molten metal and its influence on the production of castings. The students will understand the relevance of fluidity, the means by which this is measured and the effect of alloy type. Basic understanding of foundry processes, phase diagrams, basic physics and mathematics background is assumedSubjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | machining | forming | casting | fluidity | solidification rates | short freezing range alloys | long freezing range alloys | impurities | map of fluidity | surface tension | section thickness | concept of continuous fluidity | feeding | corematerials | ukoer | Engineering | H000License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.514 Strongly Correlated Systems in Condensed Matter Physics (MIT)

Description

In this course we shall develop theoretical methods suitable for the description of the many-body phenomena, such as Hamiltonian second-quantized operator formalism, Greens functions, path integral, functional integral, and the quantum kinetic equation. The concepts to be introduced include, but are not limited to, the random phase approximation, the mean field theory (aka saddle-point, or semiclassical approximation), the tunneling dynamics in imaginary time, instantons, Berry phase, coherent state path integral, renormalization group.Subjects

condensed matter systems | low-dimension magnetic and electronic systems | disorder and quantum transport | magnetic impurities | the Kondo problem | quantum spin systems | the Hubbard model | high temperature superconductors | Bose Condensates | Quasiparticles | Collective Modes | Superfluidity | Vortices | Fermi Gases | Fermi Liquids | Collective Excitations | Cooper Pairing | BCS Theory | Off-diagonal Long-range Order | Superconductivity | Atom Interacting | Optical Fields | Lamb Shift | Casimir Effect | Dicke Superradiance | Quantum Transport | Wave Scattering | Disordered Media | Localization | Tunneling | Instantons | Macroscopic Quantum Systems | Coupling | Thermal Bath | Spin-boson Model | Kondo Effect | Spin Dynamics | Gases Transport | Solids Transport | Cold Atoms | Optical Lattices | Quantum Theory | Photodetection | Electric NoiseLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.231 Physics of Solids I (MIT)

Description

The topics covered in this course include:Periodic Structure and Symmetry of CrystalsDiffraction, Reciprocal LatticeChemical BondingLattice DynamicsPhononsThermal PropertiesFree Electron GasModel of MetalsBloch Theorem and Band StructureNearly Free Electron ApproximationTight Binding MethodFermi SurfaceSemiconductorsElectronsHolesImpuritiesOptical PropertiesExcitons andMagnetismSubjects

periodic structure and symmetry of crystals | diffraction | reciprocal lattice | chemical bonding | phonons | thermal properties | free electron gas | model of metals | Bloch theorem and band structure | nearly free electron approximation | tight binding method | Fermi surface | semiconductors | electrons | holes | impurities | optical properties | excitons | magnetismLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataTALAT Lecture 3202: The Liquid Metal

Description

This lecture provides an introduction to factors affecting the quality of molten aluminium. Basic knowledge of foundry practice is assumed. The student should be able to appreciate the differences between good and bad melting practices in a foundry.Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | machining | forming | casting | impurities | oxide pollution | hydrogen pollution | pollutants | oxide inclusions | purge degassing | flux degassing | rotary degassing | Cosworht casting process | low inclusions | lost crucible process | melt quality | reduced pressure test | gas content | inclusion content | corematerials | ukoerLicense

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://core.materials.ac.uk/rss/talat.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataTALAT Lecture 3205: The Fluidity of Molten Metals

Description

This lecture introduces the concept of fluidity of molten metal and its influence on the production of castings. The students will understand the relevance of fluidity, the means by which this is measured and the effect of alloy type. Basic understanding of foundry processes, phase diagrams, basic physics and mathematics background is assumedSubjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | machining | forming | casting | fluidity | solidification rates | short freezing range alloys | long freezing range alloys | impurities | map of fluidity | surface tension | section thickness | concept of continuous fluidity | feeding | corematerials | ukoerLicense

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://core.materials.ac.uk/rss/talat.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.231 Physics of Solids I (MIT)

Description

This course offers an introduction to the basic concepts of the quantum theory of solids.Subjects

periodic structure | symmetry of crystals | diffraction | reciprocal lattice | chemical bonding | lattice dynamics | phonons | thermal properties | free electron gas | model of metals | Bloch theorem | band structure | nearly free electron approximation | tight binding method | Fermi surface | semiconductors | electrons | holes | impurities | optical properties | excitons | magnetism.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.514 Strongly Correlated Systems in Condensed Matter Physics (MIT)

Description

In this course we shall develop theoretical methods suitable for the description of the many-body phenomena, such as Hamiltonian second-quantized operator formalism, Greens functions, path integral, functional integral, and the quantum kinetic equation. The concepts to be introduced include, but are not limited to, the random phase approximation, the mean field theory (aka saddle-point, or semiclassical approximation), the tunneling dynamics in imaginary time, instantons, Berry phase, coherent state path integral, renormalization group.Subjects

condensed matter systems | low-dimension magnetic and electronic systems | disorder and quantum transport | magnetic impurities | the Kondo problem | quantum spin systems | the Hubbard model | high temperature superconductors | Bose Condensates | Quasiparticles | Collective Modes | Superfluidity | Vortices | Fermi Gases | Fermi Liquids | Collective Excitations | Cooper Pairing | BCS Theory | Off-diagonal Long-range Order | Superconductivity | Atom Interacting | Optical Fields | Lamb Shift | Casimir Effect | Dicke Superradiance | Quantum Transport | Wave Scattering | Disordered Media | Localization | Tunneling | Instantons | Macroscopic Quantum Systems | Coupling | Thermal Bath | Spin-boson Model | Kondo Effect | Spin Dynamics | Gases Transport | Solids Transport | Cold Atoms | Optical Lattices | Quantum Theory | Photodetection | Electric NoiseLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata