Searching for instability : 43 results found | RSS Feed for this search

1 2

1.63 Advanced Fluid Dynamics of the Environment (MIT) 1.63 Advanced Fluid Dynamics of the Environment (MIT)

Description

Designed to familiarize students with theories and analytical tools useful for studying research literature, this course is a survey of fluid mechanical problems in the water environment. Because of the inherent nonlinearities in the governing equations, we shall emphasize the art of making analytical approximations not only for facilitating calculations but also for gaining deeper physical insight. The importance of scales will be discussed throughout the course in lectures and homeworks. Mathematical techniques beyond the usual preparation of first-year graduate students will be introduced as a part of the course. Topics vary from year to year. Designed to familiarize students with theories and analytical tools useful for studying research literature, this course is a survey of fluid mechanical problems in the water environment. Because of the inherent nonlinearities in the governing equations, we shall emphasize the art of making analytical approximations not only for facilitating calculations but also for gaining deeper physical insight. The importance of scales will be discussed throughout the course in lectures and homeworks. Mathematical techniques beyond the usual preparation of first-year graduate students will be introduced as a part of the course. Topics vary from year to year.

Subjects

fluid dynamics | fluid dynamics | fluid motion | fluid motion | Cartesian tensor convention | Cartesian tensor convention | scaling | scaling | approximations | approximations | slow flow | slow flow | Stokes flow | Stokes flow | Oseen | Oseen | spreading | spreading | gravity | gravity | stratified fluid | stratified fluid | boundary layer | boundary layer | high speed flow | high speed flow | jets | jets | thermal plume | thermal plume | pure fluids | pure fluids | porous media | porous media | similarity method of solution | similarity method of solution | shear | shear | stratification | stratification | Orr-Sommerfeld | Orr-Sommerfeld | capillary phenomena | capillary phenomena | bubbles | bubbles | drops | drops | Marangoni instability | Marangoni instability | contact lines | contact lines | geophysical fluid dynamics | geophysical fluid dynamics | coastal flows | coastal flows | wind-induced flows | wind-induced flows | coastal upwelling | coastal upwelling | transient boundary layer | transient boundary layer | buoyancy | buoyancy | convection porous media | convection porous media | dispersion | dispersion | hydrodynamic instability | hydrodynamic instability | Kelvin-Helmholtz instability | Kelvin-Helmholtz instability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.63 Advanced Fluid Dynamics of the Environment (MIT)

Description

Designed to familiarize students with theories and analytical tools useful for studying research literature, this course is a survey of fluid mechanical problems in the water environment. Because of the inherent nonlinearities in the governing equations, we shall emphasize the art of making analytical approximations not only for facilitating calculations but also for gaining deeper physical insight. The importance of scales will be discussed throughout the course in lectures and homeworks. Mathematical techniques beyond the usual preparation of first-year graduate students will be introduced as a part of the course. Topics vary from year to year.

Subjects

fluid dynamics | fluid motion | Cartesian tensor convention | scaling | approximations | slow flow | Stokes flow | Oseen | spreading | gravity | stratified fluid | boundary layer | high speed flow | jets | thermal plume | pure fluids | porous media | similarity method of solution | shear | stratification | Orr-Sommerfeld | capillary phenomena | bubbles | drops | Marangoni instability | contact lines | geophysical fluid dynamics | coastal flows | wind-induced flows | coastal upwelling | transient boundary layer | buoyancy | convection porous media | dispersion | hydrodynamic instability | Kelvin-Helmholtz instability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.63 Advanced Fluid Dynamics of the Environment (MIT)

Description

Designed to familiarize students with theories and analytical tools useful for studying research literature, this course is a survey of fluid mechanical problems in the water environment. Because of the inherent nonlinearities in the governing equations, we shall emphasize the art of making analytical approximations not only for facilitating calculations but also for gaining deeper physical insight. The importance of scales will be discussed throughout the course in lectures and homeworks. Mathematical techniques beyond the usual preparation of first-year graduate students will be introduced as a part of the course. Topics vary from year to year.

Subjects

fluid dynamics | fluid motion | Cartesian tensor convention | scaling | approximations | slow flow | Stokes flow | Oseen | spreading | gravity | stratified fluid | boundary layer | high speed flow | jets | thermal plume | pure fluids | porous media | similarity method of solution | shear | stratification | Orr-Sommerfeld | capillary phenomena | bubbles | drops | Marangoni instability | contact lines | geophysical fluid dynamics | coastal flows | wind-induced flows | coastal upwelling | transient boundary layer | buoyancy | convection porous media | dispersion | hydrodynamic instability | Kelvin-Helmholtz instability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.032 Dynamics (MIT) 2.032 Dynamics (MIT)

Description

This course reviews momentum and energy principles, and then covers the following topics: Hamilton's principle and Lagrange's equations; three-dimensional kinematics and dynamics of rigid bodies; steady motions and small deviations therefrom, gyroscopic effects, and causes of instability; free and forced vibrations of lumped-parameter and continuous systems; nonlinear oscillations and the phase plane; nonholonomic systems; and an introduction to wave propagation in continuous systems. This course was originally developed by Professor T. Akylas. This course reviews momentum and energy principles, and then covers the following topics: Hamilton's principle and Lagrange's equations; three-dimensional kinematics and dynamics of rigid bodies; steady motions and small deviations therefrom, gyroscopic effects, and causes of instability; free and forced vibrations of lumped-parameter and continuous systems; nonlinear oscillations and the phase plane; nonholonomic systems; and an introduction to wave propagation in continuous systems. This course was originally developed by Professor T. Akylas.

Subjects

motion | motion | momentum | momentum | work-energy principle | work-energy principle | degrees of freedom | degrees of freedom | Lagrange's equations | Lagrange's equations | D'Alembert's principle | D'Alembert's principle | Hamilton's principle | Hamilton's principle | gyroscope | gyroscope | gyroscopic effect | gyroscopic effect | steady motions | steady motions | nature of small deviations | nature of small deviations | natural modes | natural modes | natural frequencies for continuous and lumped parameter systems | natural frequencies for continuous and lumped parameter systems | mode shapes | mode shapes | forced vibrations | forced vibrations | dynamic stability theory | dynamic stability theory | instability | instability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.802 Wave Motions in the Ocean and Atmosphere (MIT) 12.802 Wave Motions in the Ocean and Atmosphere (MIT)

Description

This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability. This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability.

Subjects

geophysical wave motion | geophysical wave motion | rotating | stratified | and rotating-stratified fluids | rotating | stratified | and rotating-stratified fluids | general wave concepts | general wave concepts | phase | phase | group velocity | group velocity | dynamics and kinematics of gravity waves | dynamics and kinematics of gravity waves | dispersion | dispersion | energy flux | energy flux | initial value problems | initial value problems | internal and inertial waves | internal and inertial waves | Kelvin | Kelvin | Poincare | Poincare | and Rossby waves | and Rossby waves | homogeneous and stratified fluids | homogeneous and stratified fluids | Laplace tidal equations | Laplace tidal equations | equatorial waves | equatorial waves | resonant interactions | resonant interactions | potential vorticity | potential vorticity | wave-mean flow interactions | wave-mean flow interactions | instability | instability | 12. Kelvin | Poincare | and Rossby waves | 12. Kelvin | Poincare | and Rossby waves | Kelvin | Poincare | and Rossby waves | Kelvin | Poincare | and Rossby waves | internal gravity waves | internal gravity waves | surface gravity waves | surface gravity waves | rotation | rotation | large-scale hydrostatic motions | large-scale hydrostatic motions | vertical structure equation | vertical structure equation | equatorial ?-plane | equatorial ?-plane | Stratified Quasi-Geostrophic Motion | Stratified Quasi-Geostrophic Motion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.333 Atmospheric and Ocean Circulations (MIT) 12.333 Atmospheric and Ocean Circulations (MIT)

Description

In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss. In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.

Subjects

atmospheric and oceanic phenomena | atmospheric and oceanic phenomena | observations | observations | theoretical interpretations | theoretical interpretations | monsoons | monsoons | El Ni?o | El Ni?o | planetary waves | planetary waves | atmospheric synoptic eddies and fronts | atmospheric synoptic eddies and fronts | gulf stream rings | gulf stream rings | hurricanes | hurricanes | surface and internal gravity waves | surface and internal gravity waves | tides | tides | shallow water gravity waves | shallow water gravity waves | deep water gravity waves | deep water gravity waves | internal gravity waves | internal gravity waves | large-scale motions | large-scale motions | rotating earth | rotating earth | Rossby waves | Rossby waves | planetary scale motions | planetary scale motions | baroclinic instability | baroclinic instability | midlatitude storms | midlatitude storms | equatorial atmosphere | equatorial atmosphere | equatorial ocean | equatorial ocean | southern oscillation | southern oscillation | tropical cyclones | tropical cyclones | typhoons | typhoons

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.615 MHD Theory of Fusion Systems (MIT) 22.615 MHD Theory of Fusion Systems (MIT)

Description

This course discusses MHD equilibria in cylindrical, toroidal, and noncircular tokamaks. It covers derivation of the basic MHD model from the Boltzmann equation, use of MHD equilibrium theory in poloidal field design, MHD stability theory including the Energy Principle, interchange instability, ballooning modes, second region of stability, and external kink modes. Emphasis is on discovering configurations capable of achieving good confinement at high beta. This course discusses MHD equilibria in cylindrical, toroidal, and noncircular tokamaks. It covers derivation of the basic MHD model from the Boltzmann equation, use of MHD equilibrium theory in poloidal field design, MHD stability theory including the Energy Principle, interchange instability, ballooning modes, second region of stability, and external kink modes. Emphasis is on discovering configurations capable of achieving good confinement at high beta.

Subjects

Magnetohydrodynamics | Magnetohydrodynamics | plasma | plasma | transport theory | transport theory | Boltzmann-Maxwell equations | Boltzmann-Maxwell equations | tokamaks | tokamaks | MHD equilibria | MHD equilibria | poloidal field design | poloidal field design | MHD stability theory | MHD stability theory | Energy Principle | Energy Principle | interchange instability | interchange instability | ballooning modes | ballooning modes | second region of stability | second region of stability | external kink modes | external kink modes | MHD instabilities | MHD instabilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.313J Thermal Hydraulics in Power Technology (MIT) 22.313J Thermal Hydraulics in Power Technology (MIT)

Description

This course covers the thermo-fluid dynamic phenomena and analysis methods for conventional and nuclear power stations. Specific topics include: kinematics and dynamics of two-phase flows; steam separation; boiling, instabilities, and critical conditions; single-channel transient analysis; multiple channels connected at plena; loop analysis including single and two-phase natural circulation; and subchannel analysis. This course covers the thermo-fluid dynamic phenomena and analysis methods for conventional and nuclear power stations. Specific topics include: kinematics and dynamics of two-phase flows; steam separation; boiling, instabilities, and critical conditions; single-channel transient analysis; multiple channels connected at plena; loop analysis including single and two-phase natural circulation; and subchannel analysis.

Subjects

reactor | reactor | nuclear reactor | nuclear reactor | thermal behavior | thermal behavior | hydraulic | hydraulic | hydraulic behavior | hydraulic behavior | heat | heat | modeling | modeling | steam | steam | stability | stability | instability | instability | thermo-fluid dynamic phenomena | thermo-fluid dynamic phenomena | single-heated channel-transient analysis | single-heated channel-transient analysis | Multiple-heated channels | Multiple-heated channels | Loop analysis | Loop analysis | single and two-phase natural circulation | single and two-phase natural circulation | Kinematics | Kinematics | two-phase flows | two-phase flows | subchannel analysis | subchannel analysis | Core thermal analysis | Core thermal analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.313 Thermal Hydraulics in Nuclear Power Technology (MIT) 22.313 Thermal Hydraulics in Nuclear Power Technology (MIT)

Description

This course covers the thermo-fluid dynamic phenomena and analysis methods for conventional and nuclear power stations. Specific topics include: kinematics and dynamics of two-phase flows; steam separation; boiling, instabilities, and critical conditions; single-channel transient analysis; multiple channels connected at plena; loop analysis including single and two-phase natural circulation; and subchannel analysis.Starting in Spring 2007, this course will be offered jointly in the Departments of Nuclear Science and Engineering, Mechanical Engineering, and Chemical Engineering, and will be titled "Thermal Hydraulics in Power Technology." This course covers the thermo-fluid dynamic phenomena and analysis methods for conventional and nuclear power stations. Specific topics include: kinematics and dynamics of two-phase flows; steam separation; boiling, instabilities, and critical conditions; single-channel transient analysis; multiple channels connected at plena; loop analysis including single and two-phase natural circulation; and subchannel analysis.Starting in Spring 2007, this course will be offered jointly in the Departments of Nuclear Science and Engineering, Mechanical Engineering, and Chemical Engineering, and will be titled "Thermal Hydraulics in Power Technology."

Subjects

reactor | reactor | nuclear reactor | nuclear reactor | thermal behavior | thermal behavior | hydraulic | hydraulic | hydraulic behavior | hydraulic behavior | heat | heat | modeling | modeling | steam | steam | stability | stability | instability | instability | thermo-fluid dynamic phenomena | thermo-fluid dynamic phenomena | single-heated channel-transient analysis | single-heated channel-transient analysis | Multiple-heated channels | Multiple-heated channels | Loop analysis | Loop analysis | single and two-phase natural circulation | single and two-phase natural circulation | Kinematics | Kinematics | two-phase flows | two-phase flows | subchannel analysis | subchannel analysis | Core thermal analysis | Core thermal analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.21 Kinetic Processes in Materials (MIT) 3.21 Kinetic Processes in Materials (MIT)

Description

This course presents a unified treatment of phenomenological and atomistic kinetic processes in materials. It provides the foundation for the advanced understanding of processing, microstructural evolution, and behavior for a broad spectrum of materials. The course emphasizes analysis and development of rigorous comprehension of fundamentals. Topics include: irreversible thermodynamics; diffusion; nucleation; phase transformations; fluid and heat transport; morphological instabilities; gas-solid, liquid-solid, and solid-solid reactions. This course presents a unified treatment of phenomenological and atomistic kinetic processes in materials. It provides the foundation for the advanced understanding of processing, microstructural evolution, and behavior for a broad spectrum of materials. The course emphasizes analysis and development of rigorous comprehension of fundamentals. Topics include: irreversible thermodynamics; diffusion; nucleation; phase transformations; fluid and heat transport; morphological instabilities; gas-solid, liquid-solid, and solid-solid reactions.

Subjects

Thermodynamics | Thermodynamics | field | field | gradient | gradient | continuity equation | continuity equation | irreversible thermodynamics | irreversible thermodynamics | entropy | entropy | Onsager's symmetry principle | Onsager's symmetry principle | diffusion | diffusion | capillarity | capillarity | stress | stress | diffusion equation | diffusion equation | crystal | crystal | jump process | jump process | jump rate | jump rate | diffusivity | diffusivity | interstitial | interstitial | Kroger-Vink | Kroger-Vink | grain boundary | grain boundary | isotropic | isotropic | Rayleigh instability | Rayleigh instability | Gibbs-Thomson | Gibbs-Thomson | particle coarsening | particle coarsening | growth kinetics | growth kinetics | phase transformation | phase transformation | nucleation | nucleation | spinoldal decomposition | spinoldal decomposition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.804 Large-scale Flow Dynamics Lab (MIT) 12.804 Large-scale Flow Dynamics Lab (MIT)

Description

12.804 is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices. 12.804 is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices.

Subjects

flow dynamics laboratory | flow dynamics laboratory | oceanic | oceanic | atmospheric | atmospheric | quasi-balanced flows | quasi-balanced flows | computational models | computational models | rotating tank experiments | rotating tank experiments | potential vorticity conservation | potential vorticity conservation | potential vorticity inversion | potential vorticity inversion | Rossby waves | Rossby waves | Rossby wave propagation | Rossby wave propagation | baroclinic instability | baroclinic instability | vortices | vortices

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.003 Modeling Dynamics and Control I (MIT) 2.003 Modeling Dynamics and Control I (MIT)

Description

Includes audio/video content: AV special element video. This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered. Includes audio/video content: AV special element video. This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.

Subjects

modeling | modeling | analysis | analysis | dynamic | dynamic | systems | systems | mechanical | mechanical | translation | translation | uniaxial | uniaxial | rotation | rotation | electrical | electrical | circuits | circuits | coupling | coupling | levers | levers | gears | gears | electro-mechanical | electro-mechanical | devices | devices | linear | linear | differential | differential | equations | equations | state-determined | state-determined | Laplace | Laplace | transforms | transforms | transfer | transfer | functions | functions | frequency | frequency | response | response | Bode | Bode | vibrations | vibrations | modal | modal | open-loop | open-loop | closed-loop | closed-loop | control | control | instability | instability | time-domain | time-domain | controller | controller | frequency-domain | frequency-domain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.520 Geodynamics (MIT) 12.520 Geodynamics (MIT)

Description

This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic. This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.

Subjects

Geodynamics | Geodynamics | mechanics of deformation | mechanics of deformation | crust | crust | mantle | mantle | rheological descriptions | rheological descriptions | brittle | brittle | elastic | elastic | linear | linear | nonlinear fluids | nonlinear fluids | viscoelastic | viscoelastic | surface tractions | surface tractions | tectonic stress | tectonic stress | quantity expression | quantity expression | stress variations | stress variations | sandbox tectonics | sandbox tectonics | displacement gradients | displacement gradients | strains | strains | rotations | rotations | finite strain | finite strain | motivation | motivation | dislocation | dislocation | plates | plates | topography | topography | rock rheology | rock rheology | accretionary wedge | accretionary wedge | linear fluids | linear fluids | elastic models | elastic models | newtonian fluids | newtonian fluids | stream function | stream function | Rayleigh-Taylor instability | Rayleigh-Taylor instability | diapirism | diapirism | diapirs | diapirs | plumes | plumes | corner flow | corner flow | power law creep | power law creep | viscoelasticity | viscoelasticity | porous media | porous media | Elsasser model | Elsasser model | time dependent porous flow | time dependent porous flow

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.941 Disaster, Vulnerability and Resilience (MIT) 11.941 Disaster, Vulnerability and Resilience (MIT)

Description

In recent years, the redistribution of risk has created conditions for natural and technological disasters to become more widespread, more difficult to manage, and more discriminatory in their effects. Policy and planning decision-makers frequently focus on the impact that human settlement patterns, land use decisions, and risky technologies can have on vulnerable populations. However, to ensure safety and promote equity, they also must be familiar with the social and political dynamics that are present at each stage of the disaster management cycle. Therefore, this course will provide students with: An understanding of the breadth of factors that give rise to disaster vulnerability; and A foundation for assessing and managing the social and political processes associated with disaster po In recent years, the redistribution of risk has created conditions for natural and technological disasters to become more widespread, more difficult to manage, and more discriminatory in their effects. Policy and planning decision-makers frequently focus on the impact that human settlement patterns, land use decisions, and risky technologies can have on vulnerable populations. However, to ensure safety and promote equity, they also must be familiar with the social and political dynamics that are present at each stage of the disaster management cycle. Therefore, this course will provide students with: An understanding of the breadth of factors that give rise to disaster vulnerability; and A foundation for assessing and managing the social and political processes associated with disaster po

Subjects

natural disaster | natural disaster | environment | environment | risk | risk | risk management | risk management | vulnerability | vulnerability | resilience | resilience | global warming | global warming | rebuilding | rebuilding | risk reduction | risk reduction | nature | nature | hazard | hazard | hazard reduction | hazard reduction | disaster policy | disaster policy | agenda setting | agenda setting | community vulnerability | community vulnerability | climate instability | climate instability | public trust | public trust | reflective practice | reflective practice | resilient cities | resilient cities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Cancer predisposition and evolution

Description

Identifying genes that increase the risk of bowel or other cancers allows us to offer preventative measures, such as removing tumours at an early stage. A better understanding of how and why cancers grow also helps develop improved treatments. Ian Tomlinson, Professor of Molecular and Population Genetics at the Wellcome Trust for Human Genetics, works on the identification of genes that predispose to colorectal and other cancers. His research focuses on the relative importance of selection and genomic instability. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

genes | predispose | cancer | genomic instability | genes | predispose | cancer | genomic instability

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.492-2 Integrated Chemical Engineering Topics I: Introduction to Biocatalysis (MIT) 10.492-2 Integrated Chemical Engineering Topics I: Introduction to Biocatalysis (MIT)

Description

This course provides a brief introduction to the field of biocatalysis in the context of process design. Fundamental topics include why and when one may choose to use biological systems for chemical conversion, considerations for using free enzymes versus whole cells, and issues related to design and development of bioconversion processes. Biological and engineering problems are discussed as well as how one may arrive at both biological and engineering solutions. This course provides a brief introduction to the field of biocatalysis in the context of process design. Fundamental topics include why and when one may choose to use biological systems for chemical conversion, considerations for using free enzymes versus whole cells, and issues related to design and development of bioconversion processes. Biological and engineering problems are discussed as well as how one may arrive at both biological and engineering solutions.

Subjects

biocatalysis | biocatalysis | enzymes | enzymes | enzyme kinetics | enzyme kinetics | whole cell catalysts | whole cell catalysts | biocatalytic processes | biocatalytic processes | site-directed mutagenesis | site-directed mutagenesis | cloning | cloning | enzyme performance | enzyme performance | enzyme specificity | enzyme specificity | enzyme inhibition | enzyme inhibition | enzyme toxicity | enzyme toxicity | yield | yield | enzyme instability | enzyme instability | equilibrium reactions | equilibrium reactions | product solubility | product solubility | substrate solubility | substrate solubility

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Cancer predisposition and evolution

Description

Identifying genes that increase the risk of bowel or other cancers allows us to offer preventative measures, such as removing tumours at an early stage. A better understanding of how and why cancers grow also helps develop improved treatments. Ian Tomlinson, Professor of Molecular and Population Genetics at the Wellcome Trust for Human Genetics, works on the identification of genes that predispose to colorectal and other cancers. His research focuses on the relative importance of selection and genomic instability. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

genes | predispose | cancer | genomic instability | genes | predispose | cancer | genomic instability

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.872 System Dynamics II (MIT) 15.872 System Dynamics II (MIT)

Description

15.872 is a continuation of 15.871 Introduction to System Dynamics. It emphasizes tools and methods needed to apply systems thinking and simulation modeling successfully in complex real-world settings. The course uses simulation models, management flight simulators and case studies to deepen the conceptual and modeling skills introduced in 15.871. Through models and case studies of successful applications, students learn how to use qualitative and quantitative data to formulate and test models, and how to work effectively with senior executives to implement change successfully. 15.872 is a prerequisite for further work in the field. 15.872 is a continuation of 15.871 Introduction to System Dynamics. It emphasizes tools and methods needed to apply systems thinking and simulation modeling successfully in complex real-world settings. The course uses simulation models, management flight simulators and case studies to deepen the conceptual and modeling skills introduced in 15.871. Through models and case studies of successful applications, students learn how to use qualitative and quantitative data to formulate and test models, and how to work effectively with senior executives to implement change successfully. 15.872 is a prerequisite for further work in the field.

Subjects

system dynamics business systems | system dynamics business systems | simulation models | simulation models | modeling software | modeling software | managing instability | managing instability | Bullwhip effect | Bullwhip effect | policy issues | policy issues | project management | project management

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.804 Large-scale Flow Dynamics Lab (MIT) 12.804 Large-scale Flow Dynamics Lab (MIT)

Description

This course is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices. This course is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices.

Subjects

geostrophic adjustment | geostrophic adjustment | potential vorticity | potential vorticity | Rossby waves | Rossby waves | Frontal Waves | Frontal Waves | baroclinic instability | baroclinic instability | isolated vortices | isolated vortices | ageostrophic motion | ageostrophic motion | flow dynamics | flow dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.307 Weather and Climate Laboratory (MIT) 12.307 Weather and Climate Laboratory (MIT)

Description

Course 12.307 is an undergraduate course intended to illustrate, by means of 'hands on' projects, the basic dynamical and physical principles that govern the general circulation of the atmosphere and ocean and the day to day sequence of weather events.  The course parallels the content of the new undergraduate textbook Atmosphere, Ocean and Climate Dynamics by John Marshall and R. Alan Plumb. Course 12.307 is an undergraduate course intended to illustrate, by means of 'hands on' projects, the basic dynamical and physical principles that govern the general circulation of the atmosphere and ocean and the day to day sequence of weather events.  The course parallels the content of the new undergraduate textbook Atmosphere, Ocean and Climate Dynamics by John Marshall and R. Alan Plumb.

Subjects

Rotation stiffens fluids | Rotation stiffens fluids | Convection | Convection | Radial inflow | Radial inflow | Parabolic table | Parabolic table | inertial Circles | inertial Circles | Taylor Columns | Taylor Columns | Thermal Wind and Hadley Circulation | Thermal Wind and Hadley Circulation | Slope of a frontal surface | Slope of a frontal surface | Ekman layers | Ekman layers | Perrot's bathtub experiment | Perrot's bathtub experiment | Atmospheric General circulation | Atmospheric General circulation | Stress-driven circulation and Ekman layers | Stress-driven circulation and Ekman layers | Ocean gyres | Ocean gyres | Thermohaline Circulation | Thermohaline Circulation | Geostrophic/Ageostrophic Flow | Geostrophic/Ageostrophic Flow | Mass and Wind | Mass and Wind | Hydrostatic balance | Hydrostatic balance | Baroclinic instability | Baroclinic instability | Hurricane Gustav | Hurricane Gustav

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.492-2 Integrated Chemical Engineering Topics I: Introduction to Biocatalysis (MIT)

Description

This course provides a brief introduction to the field of biocatalysis in the context of process design. Fundamental topics include why and when one may choose to use biological systems for chemical conversion, considerations for using free enzymes versus whole cells, and issues related to design and development of bioconversion processes. Biological and engineering problems are discussed as well as how one may arrive at both biological and engineering solutions.

Subjects

biocatalysis | enzymes | enzyme kinetics | whole cell catalysts | biocatalytic processes | site-directed mutagenesis | cloning | enzyme performance | enzyme specificity | enzyme inhibition | enzyme toxicity | yield | enzyme instability | equilibrium reactions | product solubility | substrate solubility

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.802 Wave Motions in the Ocean and Atmosphere (MIT)

Description

This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability.

Subjects

geophysical wave motion | rotating | stratified | and rotating-stratified fluids | general wave concepts | phase | group velocity | dynamics and kinematics of gravity waves | dispersion | energy flux | initial value problems | internal and inertial waves | Kelvin | Poincare | and Rossby waves | homogeneous and stratified fluids | Laplace tidal equations | equatorial waves | resonant interactions | potential vorticity | wave-mean flow interactions | instability | 12. Kelvin | Poincare | and Rossby waves | Kelvin | Poincare | and Rossby waves | internal gravity waves | surface gravity waves | rotation | large-scale hydrostatic motions | vertical structure equation | equatorial ?-plane | Stratified Quasi-Geostrophic Motion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.003 Modeling Dynamics and Control I (MIT)

Description

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.

Subjects

modeling | analysis | dynamic | systems | mechanical | translation | uniaxial | rotation | electrical | circuits | coupling | levers | gears | electro-mechanical | devices | linear | differential | equations | state-determined | Laplace | transforms | transfer | functions | frequency | response | Bode | vibrations | modal | open-loop | closed-loop | control | instability | time-domain | controller | frequency-domain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.333 Atmospheric and Ocean Circulations (MIT)

Description

In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.

Subjects

atmospheric and oceanic phenomena | observations | theoretical interpretations | monsoons | El Ni?o | planetary waves | atmospheric synoptic eddies and fronts | gulf stream rings | hurricanes | surface and internal gravity waves | tides | shallow water gravity waves | deep water gravity waves | internal gravity waves | large-scale motions | rotating earth | Rossby waves | planetary scale motions | baroclinic instability | midlatitude storms | equatorial atmosphere | equatorial ocean | southern oscillation | tropical cyclones | typhoons

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.003 Modeling Dynamics and Control I (MIT)

Description

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.

Subjects

modeling | analysis | dynamic | systems | mechanical | translation | uniaxial | rotation | electrical | circuits | coupling | levers | gears | electro-mechanical | devices | linear | differential | equations | state-determined | Laplace | transforms | transfer | functions | frequency | response | Bode | vibrations | modal | open-loop | closed-loop | control | instability | time-domain | controller | frequency-domain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata