Searching for integral : 126 results found | RSS Feed for this search

18.024 Multivariable Calculus with Theory (MIT) 18.024 Multivariable Calculus with Theory (MIT)

Description

This course is a continuation of 18.014. It covers the same material as 18.02 (Multivariable Calculus), but at a deeper level, emphasizing careful reasoning and understanding of proofs. There is considerable emphasis on linear algebra and vector integral calculus. This course is a continuation of 18.014. It covers the same material as 18.02 (Multivariable Calculus), but at a deeper level, emphasizing careful reasoning and understanding of proofs. There is considerable emphasis on linear algebra and vector integral calculus.Subjects

linear algebra | linear algebra | vector integral calculus | vector integral calculus | Calculus of several variables | Calculus of several variables | Vector algebra in 3-space | Vector algebra in 3-space | determinants | determinants | matrices | matrices | Vector-valued functions of one variable | Vector-valued functions of one variable | space motion | space motion | Scalar functions of several variables | Scalar functions of several variables | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | Double integrals and line integrals in the plane | Double integrals and line integrals in the plane | exact differentials and conservative fields | exact differentials and conservative fields | Green's theorem and applications | Green's theorem and applications | triple integrals | triple integrals | line and surface integrals in space | line and surface integrals in space | Divergence theorem | Divergence theorem | Stokes' theorem | Stokes' theorem | applications | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.024 Calculus with Theory II (MIT) 18.024 Calculus with Theory II (MIT)

Description

This course is a continuation of 18.014. It covers the same material as 18.02 (Calculus), but at a deeper level, emphasizing careful reasoning and understanding of proofs. There is considerable emphasis on linear algebra and vector integral calculus.Topics include: Calculus of several variables. Vector algebra in 3-space, determinants, matrices. Vector-valued functions of one variable, space motion. Scalar functions of several variables: partial differentiation, gradient, optimization techniques. Double integrals and line integrals in the plane; exact differentials and conservative fields; Green's theorem and applications, triple integrals, line and surface integrals in space, Divergence theorem, Stokes' theorem; applications. Dr. Lachowska wishes to acknowledge Andrew Brooke-Taylor This course is a continuation of 18.014. It covers the same material as 18.02 (Calculus), but at a deeper level, emphasizing careful reasoning and understanding of proofs. There is considerable emphasis on linear algebra and vector integral calculus.Topics include: Calculus of several variables. Vector algebra in 3-space, determinants, matrices. Vector-valued functions of one variable, space motion. Scalar functions of several variables: partial differentiation, gradient, optimization techniques. Double integrals and line integrals in the plane; exact differentials and conservative fields; Green's theorem and applications, triple integrals, line and surface integrals in space, Divergence theorem, Stokes' theorem; applications. Dr. Lachowska wishes to acknowledge Andrew Brooke-TaylorSubjects

linear algebra | linear algebra | vector integral calculus | vector integral calculus | Calculus of several variables | Calculus of several variables | Vector algebra in 3-space | Vector algebra in 3-space | determinants | determinants | matrices | matrices | Vector-valued functions of one variable | Vector-valued functions of one variable | space motion | space motion | Scalar functions of several variables: partial differentiation | Scalar functions of several variables: partial differentiation | gradient | gradient | optimization techniques | optimization techniques | Double integrals and line integrals in the plane | Double integrals and line integrals in the plane | exact differentials and conservative fields | exact differentials and conservative fields | Green's theorem and applications | Green's theorem and applications | triple integrals | triple integrals | line and surface integrals in space | line and surface integrals in space | Divergence theorem | Divergence theorem | Stokes' theorem | Stokes' theorem | applications | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.022 Calculus of Several Variables (MIT) 18.022 Calculus of Several Variables (MIT)

Description

This is a variation on 18.02 Multivariable Calculus. It covers the same topics as in 18.02, but with more focus on mathematical concepts. This is a variation on 18.02 Multivariable Calculus. It covers the same topics as in 18.02, but with more focus on mathematical concepts.Subjects

vector algebra | vector algebra | determinant | determinant | matrix | matrix | matrices | matrices | vector-valued functions | vector-valued functions | space motion | space motion | scalar functions | scalar functions | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | double integrals | double integrals | line integrals | line integrals | exact differentials | exact differentials | conservative fields | conservative fields | Green's theorem | Green's theorem | triple integrals | triple integrals | surface integrals | surface integrals | divergence theorem | divergence theorem | Stokes' theorem | Stokes' theorem | geometry | geometry | vector fields | vector fields | linear algebra | linear algebraLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.02 Multivariable Calculus (MIT) 18.02 Multivariable Calculus (MIT)

Description

Includes audio/video content: AV lectures. This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space. MIT OpenCourseWare offers another version of 18.02, from the Spring 2006 term. Both versions cover the same material, although they are taught by different faculty and rely on different textbooks. Multivariable Calculus (18.02) is taught during the Fall and Spring terms at MIT, and is a required subject for all MIT undergraduates. Includes audio/video content: AV lectures. This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space. MIT OpenCourseWare offers another version of 18.02, from the Spring 2006 term. Both versions cover the same material, although they are taught by different faculty and rely on different textbooks. Multivariable Calculus (18.02) is taught during the Fall and Spring terms at MIT, and is a required subject for all MIT undergraduates.Subjects

calculus | calculus | calculus of several variables | calculus of several variables | vector algebra | vector algebra | determinants | determinants | matrix | matrix | matrices | matrices | vector-valued function | vector-valued function | space motion | space motion | scalar function | scalar function | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | double integrals | double integrals | line integrals | line integrals | exact differential | exact differential | conservative fields | conservative fields | Green's theorem | Green's theorem | triple integrals | triple integrals | surface integrals | surface integrals | divergence theorem Stokes' theorem | divergence theorem Stokes' theorem | applications | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.02 Multivariable Calculus (MIT) 18.02 Multivariable Calculus (MIT)

Description

This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include Vectors and Matrices, Partial Derivatives, Double and Triple Integrals, and Vector Calculus in 2 and 3-space. This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include Vectors and Matrices, Partial Derivatives, Double and Triple Integrals, and Vector Calculus in 2 and 3-space.Subjects

Calculus | Calculus | calculus of several variables | calculus of several variables | vector algebra | vector algebra | determinants | determinants | matrix | matrix | matrices | matrices | vector-valued function | vector-valued function | space motion | space motion | scalar function | scalar function | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | double integrals | double integrals | line integrals | line integrals | exact differential | exact differential | conservative fields | conservative fields | Green's theorem | Green's theorem | triple integrals | triple integrals | surface integrals | surface integrals | divergence theorem Stokes' theorem | divergence theorem Stokes' theorem | applications | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.022 Calculus (MIT) 18.022 Calculus (MIT)

Description

This is an undergraduate course on calculus of several variables. It covers all of the topics covered in Calculus II (18.02), but presents them in greater depth. These topics are vector algebra in 3-space, determinants, matrices, vector-valued functions of one variable, space motion, scalar functions of several variables, partial differentiation, gradient, optimization techniques, double integrals, line integrals in the plane, exact differentials, conservative fields, Green's theorem, triple integrals, line and surface integrals in space, the divergence theorem, and Stokes' theorem. Additional topics covered in 18.022 are geometry, vector fields, and linear algebra. This is an undergraduate course on calculus of several variables. It covers all of the topics covered in Calculus II (18.02), but presents them in greater depth. These topics are vector algebra in 3-space, determinants, matrices, vector-valued functions of one variable, space motion, scalar functions of several variables, partial differentiation, gradient, optimization techniques, double integrals, line integrals in the plane, exact differentials, conservative fields, Green's theorem, triple integrals, line and surface integrals in space, the divergence theorem, and Stokes' theorem. Additional topics covered in 18.022 are geometry, vector fields, and linear algebra.Subjects

vector algebra | vector algebra | determinant | determinant | matrix | matrix | matrices | matrices | vector-valued | vector-valued | functions | functions | space motion | space motion | scalar functions | scalar functions | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | double integrals | double integrals | line integrals | line integrals | exact differentials | exact differentials | conservative fields | conservative fields | Green's theorem | Green's theorem | triple integrals | triple integrals | surface integrals | surface integrals | divergence theorem | divergence theorem | Stokes' theorem | Stokes' theorem | geometry | geometry | vector fields | vector fields | linear algebra | linear algebraLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.02SC Multivariable Calculus (MIT) 18.02SC Multivariable Calculus (MIT)

Description

Includes audio/video content: AV lectures. This course covers differential, integral and vector calculus for functions of more than one variable. These mathematical tools and methods are used extensively in the physical sciences, engineering, economics and computer graphics. Includes audio/video content: AV lectures. This course covers differential, integral and vector calculus for functions of more than one variable. These mathematical tools and methods are used extensively in the physical sciences, engineering, economics and computer graphics.Subjects

calculus | calculus | calculus of several variables | calculus of several variables | vector algebra | vector algebra | determinants | determinants | matrix | matrix | matrices | matrices | vector-valued function | vector-valued function | space motion | space motion | scalar function | scalar function | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | double integrals | double integrals | line integrals | line integrals | exact differential | exact differential | conservative fields | conservative fields | Green's theorem | Green's theorem | triple integrals | triple integrals | surface integrals | surface integrals | divergence theorem Stokes' theorem | divergence theorem Stokes' theorem | applications | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.13 Aerodynamics of Viscous Fluids (MIT) 16.13 Aerodynamics of Viscous Fluids (MIT)

Description

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.Subjects

aerodynamics | aerodynamics | viscous fluids | viscous fluids | viscosity | viscosity | fundamental theorem of kinematics | fundamental theorem of kinematics | convection | convection | vorticity | vorticity | strain | strain | Eulerian description | Eulerian description | Lagrangian description | Lagrangian description | conservation of mass | conservation of mass | continuity | continuity | conservation of momentum | conservation of momentum | stress tensor | stress tensor | newtonian fluid | newtonian fluid | circulation | circulation | Navier-Stokes | Navier-Stokes | similarity | similarity | dimensional analysis | dimensional analysis | thin shear later approximation | thin shear later approximation | TSL coordinates | TSL coordinates | boundary conditions | boundary conditions | shear later categories | shear later categories | local scaling | local scaling | Falkner-Skan flows | Falkner-Skan flows | solution techniques | solution techniques | finite difference methods | finite difference methods | Newton-Raphson | Newton-Raphson | integral momentum equation | integral momentum equation | Thwaites method | Thwaites method | integral kinetic energy equation | integral kinetic energy equation | dissipation | dissipation | asymptotic perturbation | asymptotic perturbation | displacement body | displacement body | transpiration | transpiration | form drag | form drag | stall | stall | interacting boundary layer theory | interacting boundary layer theory | stability | stability | transition | transition | small-perturbation | small-perturbation | Orr-Somemerfeld | Orr-Somemerfeld | temporal amplification | temporal amplification | spatial amplification | spatial amplification | Reynolds | Reynolds | Prandtl | Prandtl | turbulent boundary layer | turbulent boundary layer | wake | wake | wall layers | wall layers | inner variables | inner variables | outer variables | outer variables | roughness | roughness | Clauser | Clauser | Dissipation formula | Dissipation formula | integral closer | integral closer | turbulence modeling | turbulence modeling | transport models | transport models | turbulent shear layers | turbulent shear layers | compressible then shear layers | compressible then shear layers | compressibility | compressibility | temperature profile | temperature profile | heat flux | heat flux | 3D boundary layers | 3D boundary layers | crossflow | crossflow | lateral dilation | lateral dilation | 3D separation | 3D separation | constant-crossflow | constant-crossflow | 3D transition | 3D transition | compressible thin shear layers | compressible thin shear layersLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.100A Introduction to Analysis (MIT) 18.100A Introduction to Analysis (MIT)

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the plaSubjects

mathematical analysis | mathematical analysis | estimations | estimations | limit of a sequence | limit of a sequence | limit theorems | limit theorems | subsequences | subsequences | cluster points | cluster points | infinite series | infinite series | power series | power series | local and global properties | local and global properties | continuity | continuity | intermediate-value theorem | intermediate-value theorem | convexity | convexity | integrability | integrability | Riemann integral | Riemann integral | calculus | calculus | convergence | convergence | Gamma function | Gamma function | Stirling | Stirling | quantifiers and negation | quantifiers and negation | Leibniz | Leibniz | Fubini | Fubini | improper integrals | improper integrals | Lebesgue integral | Lebesgue integral | mathematical proofs | mathematical proofs | differentiation | differentiation | integration | integrationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

18.103 picks up where 18.100B (Analysis I) left off. Topics covered include the theory of the Lebesgue integral with applications to probability, Fourier series, and Fourier integrals. 18.103 picks up where 18.100B (Analysis I) left off. Topics covered include the theory of the Lebesgue integral with applications to probability, Fourier series, and Fourier integrals.Subjects

Fourier Analysis | Fourier Analysis | Lebesgue integral | Lebesgue integral | probability | probability | Fourier series | Fourier series | Fourier integrals | Fourier integrals | Bernoulli sequence | Bernoulli sequence | Rademacher functions | Rademacher functions | Fatou's lemma | Fatou's lemma | Banach space | Banach space | Hilbert spaces | Hilbert spaces | Riemann integrals | Riemann integrals | Schwartz functions | Schwartz functionsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.01 Single Variable Calculus (MIT) 18.01 Single Variable Calculus (MIT)

Description

This introductory Calculus course covers differentiation and integration of functions of one variable, with applications. Topics include:Concepts of function, limits, and continuityDifferentiation rules, application to graphing, rates, approximations, and extremum problemsDefinite and indefinite integrationFundamental theorem of calculusApplications of integration to geometry and scienceElementary functionsTechniques of integrationApproximation of definite integrals, improper integrals, and L'Hôpital's rule MATLAB® is a trademark of The MathWorks, Inc. This introductory Calculus course covers differentiation and integration of functions of one variable, with applications. Topics include:Concepts of function, limits, and continuityDifferentiation rules, application to graphing, rates, approximations, and extremum problemsDefinite and indefinite integrationFundamental theorem of calculusApplications of integration to geometry and scienceElementary functionsTechniques of integrationApproximation of definite integrals, improper integrals, and L'Hôpital's rule MATLAB® is a trademark of The MathWorks, Inc.Subjects

differentiation and integration of functions of one variable | differentiation and integration of functions of one variable | limits | limits | continuity | continuity | differentiation rules | differentiation rules | extremum problems | extremum problems | definite and indefinite integration | definite and indefinite integration | fundamental theorem of calculus | fundamental theorem of calculus | elementary | elementary | techniques of integration | techniques of integration | approximation of definite integrals | approximation of definite integrals | improper integrals | improper integrals | l'H?pital's rule | l'H?pital's rule | single variable calculus | single variable calculus | mathematical applications | mathematical applications | function | function | graphing | graphing | rates | rates | approximations | approximations | definite integration | definite integration | indefinite integration | indefinite integration | geometry | geometry | science | science | elementary functions | elementary functions | definite integrals | definite integralsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.024 Calculus with Theory II (MIT)

Description

This course is a continuation of 18.014. It covers the same material as 18.02 (Calculus), but at a deeper level, emphasizing careful reasoning and understanding of proofs. There is considerable emphasis on linear algebra and vector integral calculus.Topics include: Calculus of several variables. Vector algebra in 3-space, determinants, matrices. Vector-valued functions of one variable, space motion. Scalar functions of several variables: partial differentiation, gradient, optimization techniques. Double integrals and line integrals in the plane; exact differentials and conservative fields; Green's theorem and applications, triple integrals, line and surface integrals in space, Divergence theorem, Stokes' theorem; applications. Dr. Lachowska wishes to acknowledge Andrew Brooke-TaylorSubjects

linear algebra | vector integral calculus | Calculus of several variables | Vector algebra in 3-space | determinants | matrices | Vector-valued functions of one variable | space motion | Scalar functions of several variables: partial differentiation | gradient | optimization techniques | Double integrals and line integrals in the plane | exact differentials and conservative fields | Green's theorem and applications | triple integrals | line and surface integrals in space | Divergence theorem | Stokes' theorem | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.024 Multivariable Calculus with Theory (MIT)

Description

This course is a continuation of 18.014. It covers the same material as 18.02 (Multivariable Calculus), but at a deeper level, emphasizing careful reasoning and understanding of proofs. There is considerable emphasis on linear algebra and vector integral calculus.Subjects

linear algebra | vector integral calculus | Calculus of several variables | Vector algebra in 3-space | determinants | matrices | Vector-valued functions of one variable | space motion | Scalar functions of several variables | partial differentiation | gradient | optimization techniques | Double integrals and line integrals in the plane | exact differentials and conservative fields | Green's theorem and applications | triple integrals | line and surface integrals in space | Divergence theorem | Stokes' theorem | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.01 Single Variable Calculus (MIT) 18.01 Single Variable Calculus (MIT)

Description

Includes audio/video content: AV lectures. This introductory calculus course covers differentiation and integration of functions of one variable, with applications. Includes audio/video content: AV lectures. This introductory calculus course covers differentiation and integration of functions of one variable, with applications.Subjects

differentiation and integration of functions of one variable | differentiation and integration of functions of one variable | limits | limits | continuity | continuity | differentiation rules | differentiation rules | extremum problems | extremum problems | definite and indefinite integration | definite and indefinite integration | fundamental theorem of calculus | fundamental theorem of calculus | elementary | elementary | techniques of integration | techniques of integration | approximation of definite integrals | approximation of definite integrals | improper integrals | improper integrals | l'H?pital's rule | l'H?pital's ruleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This is an undergraduate course on calculus of several variables. It covers all of the topics covered in Calculus II (18.02), but presents them in greater depth. These topics are vector algebra in 3-space, determinants, matrices, vector-valued functions of one variable, space motion, scalar functions of several variables, partial differentiation, gradient, optimization techniques, double integrals, line integrals in the plane, exact differentials, conservative fields, Green's theorem, triple integrals, line and surface integrals in space, the divergence theorem, and Stokes' theorem. Additional topics covered in 18.022 are geometry, vector fields, and linear algebra.Subjects

vector algebra | determinant | matrix | matrices | vector-valued | functions | space motion | scalar functions | partial differentiation | gradient | optimization techniques | double integrals | line integrals | exact differentials | conservative fields | Green's theorem | triple integrals | surface integrals | divergence theorem | Stokes' theorem | geometry | vector fields | linear algebraLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.022 Calculus of Several Variables (MIT)

Description

This is a variation on 18.02 Multivariable Calculus. It covers the same topics as in 18.02, but with more focus on mathematical concepts.Subjects

vector algebra | determinant | matrix | matrices | vector-valued functions | space motion | scalar functions | partial differentiation | gradient | optimization techniques | double integrals | line integrals | exact differentials | conservative fields | Green's theorem | triple integrals | surface integrals | divergence theorem | Stokes' theorem | geometry | vector fields | linear algebraLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.02SC Multivariable Calculus (MIT)

Description

This course covers differential, integral and vector calculus for functions of more than one variable. These mathematical tools and methods are used extensively in the physical sciences, engineering, economics and computer graphics.Subjects

calculus | calculus of several variables | vector algebra | determinants | matrix | matrices | vector-valued function | space motion | scalar function | partial differentiation | gradient | optimization techniques | double integrals | line integrals | exact differential | conservative fields | Green's theorem | triple integrals | surface integrals | divergence theorem Stokes' theorem | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allocwscholarcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.01 Single Variable Calculus (MIT) 18.01 Single Variable Calculus (MIT)

Description

This introductory calculus course covers differentiation and integration of functions of one variable, with applications. This introductory calculus course covers differentiation and integration of functions of one variable, with applications.Subjects

differentiation and integration of functions of one variable | differentiation and integration of functions of one variable | limits | limits | continuity | continuity | differentiation rules | differentiation rules | extremum problems | extremum problems | definite and indefinite integration | definite and indefinite integration | fundamental theorem of calculus | fundamental theorem of calculus | elementary | elementary | techniques of integration | techniques of integration | approximation of definite integrals | approximation of definite integrals | improper integrals | improper integrals | l'H?pital's rule | l'H?pital's ruleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.02 Multivariable Calculus (MIT)

Description

This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space. MIT OpenCourseWare offers another version of 18.02, from the Spring 2006 term. Both versions cover the same material, although they are taught by different faculty and rely on different textbooks. Multivariable Calculus (18.02) is taught during the Fall and Spring terms at MIT, and is a required subject for all MIT undergraduates.Subjects

calculus | calculus of several variables | vector algebra | determinants | matrix | matrices | vector-valued function | space motion | scalar function | partial differentiation | gradient | optimization techniques | double integrals | line integrals | exact differential | conservative fields | Green's theorem | triple integrals | surface integrals | divergence theorem Stokes' theorem | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.307 Integral Equations (MIT) 18.307 Integral Equations (MIT)

Description

This course emphasizes concepts and techniques for solving integral equations from an applied mathematics perspective. Material is selected from the following topics: Volterra and Fredholm equations, Fredholm theory, the Hilbert-Schmidt theorem; Wiener-Hopf Method; Wiener-Hopf Method and partial differential equations; the Hilbert Problem and singular integral equations of Cauchy type; inverse scattering transform; and group theory. Examples are taken from fluid and solid mechanics, acoustics, quantum mechanics, and other applications. This course emphasizes concepts and techniques for solving integral equations from an applied mathematics perspective. Material is selected from the following topics: Volterra and Fredholm equations, Fredholm theory, the Hilbert-Schmidt theorem; Wiener-Hopf Method; Wiener-Hopf Method and partial differential equations; the Hilbert Problem and singular integral equations of Cauchy type; inverse scattering transform; and group theory. Examples are taken from fluid and solid mechanics, acoustics, quantum mechanics, and other applications.Subjects

integral equations | integral equations | applied mathematics | applied mathematics | Volterra equation | Volterra equation | Fredholm equation | Fredholm equation | Fredholm theory | Fredholm theory | Hilbert-Schmidt theorem | Hilbert-Schmidt theorem | Wiener-Hopf Method | Wiener-Hopf Method | partial differential equations | partial differential equations | Hilbert Problem | Hilbert Problem | ingular integral equations | ingular integral equations | Cauchy type | Cauchy type | inverse scattering transform | inverse scattering transform | group theory | group theory | fluid mechanics | fluid mechanics | solid mechanics | solid mechanics | acoustics | acoustics | quantum mechanics | quantum mechanicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.101 Analysis II (MIT) 18.101 Analysis II (MIT)

Description

This course continues from Analysis I (18.100B), in the direction of manifolds and global analysis. The first half of the course covers multivariable calculus. The rest of the course covers the theory of differential forms in n-dimensional vector spaces and manifolds. This course continues from Analysis I (18.100B), in the direction of manifolds and global analysis. The first half of the course covers multivariable calculus. The rest of the course covers the theory of differential forms in n-dimensional vector spaces and manifolds.Subjects

Differentiable maps | Differentiable maps | inverse and implicit function theorems | inverse and implicit function theorems | n-dimensional Riemann integral | n-dimensional Riemann integral | change of variables in multiple integrals | change of variables in multiple integrals | manifolds | manifolds | differential forms | differential forms | and n-dimensional version of Stokes' theorem | and n-dimensional version of Stokes' theoremLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.02 Multivariable Calculus (MIT)

Description

This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include Vectors and Matrices, Partial Derivatives, Double and Triple Integrals, and Vector Calculus in 2 and 3-space.Subjects

Calculus | calculus of several variables | vector algebra | determinants | matrix | matrices | vector-valued function | space motion | scalar function | partial differentiation | gradient | optimization techniques | double integrals | line integrals | exact differential | conservative fields | Green's theorem | triple integrals | surface integrals | divergence theorem Stokes' theorem | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.103 Fourier Analysis (MIT) 18.103 Fourier Analysis (MIT)

Description

This course continues the content covered in 18.100 Analysis I. Roughly half of the subject is devoted to the theory of the Lebesgue integral with applications to probability, and the other half to Fourier series and Fourier integrals. This course continues the content covered in 18.100 Analysis I. Roughly half of the subject is devoted to the theory of the Lebesgue integral with applications to probability, and the other half to Fourier series and Fourier integrals.Subjects

Fourier series | Fourier series | Fourier analysis | Fourier analysis | partial sums | partial sums | waves | waves | Boolean rings | Boolean rings | Hilbert Space | Hilbert Space | Orthonormal bases | Orthonormal bases | Lp theory | Lp theory | Fourier integrals | Fourier integrals | measure | measure | central limit theorem | central limit theorem | brownian motion | brownian motion | Lebesgue integral | Lebesgue integral | periodic functions | periodic functions | Fourier coefficients | Fourier coefficients | Parseval's formula | Parseval's formula | Bernoulli sequence | Bernoulli sequence | random walks | random walks | probability theory | probability theory | Lebesgue measure | Lebesgue measureLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataísica Matemática ísica Matemática

Description

Subjects

integrales | integrales | ecuaciones | ecuaciones | transformadas | transformadas | derivadas | derivadas | inversa | inversa | ísica Teórica | ísica Teórica | sistemas | sistemas | integral | integral | coseno | coseno | ímite | ímite | serie | serie | seno | seno | parciales | parciales | variable | variable | exponencial | exponencial | Funciones | Funciones | diferenciales | diferencialesLicense

http://creativecommons.org/licenses/by-nc-sa/2.5/Site sourced from

http://ocwus.us.es/fisica-teorica/rssAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Advanced Analytic Methods in Science and Engineering is a comprehensive treatment of the advanced methods of applied mathematics. It was designed to strengthen the mathematical abilities of graduate students and train them to think on their own. Advanced Analytic Methods in Science and Engineering is a comprehensive treatment of the advanced methods of applied mathematics. It was designed to strengthen the mathematical abilities of graduate students and train them to think on their own.Subjects

elementary methods complex analysis | elementary methods complex analysis | ordinary differential equations | ordinary differential equations | partial differential equations | partial differential equations | expansions around regular irregular singular points | expansions around regular irregular singular points | asymptotic evaluation integrals | asymptotic evaluation integrals | regular perturbations | regular perturbations | WKB method | WKB method | multiple scale method | multiple scale method | boundary-layer techniques. | boundary-layer techniques. | asymptotic evaluation integrals | regular perturbations | asymptotic evaluation integrals | regular perturbations | boundary-layer techniques | boundary-layer techniquesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata