Searching for interconnection : 7 results found | RSS Feed for this search

ESD.68J Communications and Information Policy (MIT) ESD.68J Communications and Information Policy (MIT)

Description

This course provides an introduction to the technology and policy context of public communications networks, through critical discussion of current issues in communications policy and their historical roots. The course focuses on underlying rationales and models for government involvement and the complex dynamics introduced by co-evolving technologies, industry structure, and public policy objectives. Cases drawn from cellular, fixed-line, and Internet applications include evolution of spectrum policy and current proposals for reform; the migration to broadband and implications for universal service policies; and property rights associated with digital content. The course lays a foundation for thesis research in this domain. This course provides an introduction to the technology and policy context of public communications networks, through critical discussion of current issues in communications policy and their historical roots. The course focuses on underlying rationales and models for government involvement and the complex dynamics introduced by co-evolving technologies, industry structure, and public policy objectives. Cases drawn from cellular, fixed-line, and Internet applications include evolution of spectrum policy and current proposals for reform; the migration to broadband and implications for universal service policies; and property rights associated with digital content. The course lays a foundation for thesis research in this domain.

Subjects

network | network | networking | networking | telecommunications | telecommunications | data network | data network | internet | internet | services | services | wireless | wireless | public policy | public policy | FCC | FCC | regulation | regulation | information service | information service | telecom | telecom | datacom | datacom | broadband | broadband | bandwidth | bandwidth | open access | open access | spectrum | spectrum | copyright | copyright | RIAA | RIAA | IP | IP | intellectual property | intellectual property | DRM | DRM | privacy | privacy | piracy | piracy | layered model | layered model | interconnection | interconnection | competition | competition | VoIP | VoIP | IPTV | IPTV | network neutrality | network neutrality | ISP | ISP | telco | telco | ESD.68 | ESD.68 | 6.978 | 6.978

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ESD.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.896 Theory of Parallel Hardware (SMA 5511) (MIT) 6.896 Theory of Parallel Hardware (SMA 5511) (MIT)

Description

6.896 covers mathematical foundations of parallel hardware, from computer arithmetic to physical design, focusing on algorithmic underpinnings. Topics covered include: arithmetic circuits, parallel prefix, systolic arrays, retiming, clocking methodologies, boolean logic, sorting networks, interconnection networks, hypercubic networks, P-completeness, VLSI layout theory, reconfigurable wiring, fat-trees, and area-time complexity. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5511 (Theory of Parallel Hardware). 6.896 covers mathematical foundations of parallel hardware, from computer arithmetic to physical design, focusing on algorithmic underpinnings. Topics covered include: arithmetic circuits, parallel prefix, systolic arrays, retiming, clocking methodologies, boolean logic, sorting networks, interconnection networks, hypercubic networks, P-completeness, VLSI layout theory, reconfigurable wiring, fat-trees, and area-time complexity. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5511 (Theory of Parallel Hardware).

Subjects

parallel hardware | parallel hardware | computer arithmetic | computer arithmetic | physical design | physical design | algorithms | algorithms | arithmetic circuits | arithmetic circuits | parallel prefix | parallel prefix | systolic arrays | systolic arrays | retiming | retiming | clocking methodologies | clocking methodologies | boolean logic | boolean logic | sorting networks | sorting networks | interconnection networks | interconnection networks | hypercubic networks | hypercubic networks | P-completeness | P-completeness | VLSI layout theory | VLSI layout theory | reconfigurable wiring | reconfigurable wiring | fat-trees | fat-trees | area-time complexity | area-time complexity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.637 Optical Signals, Devices, and Systems (MIT) 6.637 Optical Signals, Devices, and Systems (MIT)

Description

6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this 6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this

Subjects

optical | optical | optical signals | optical signals | optical devices | optical devices | transmission | transmission | detection | detection | storage | storage | processing | processing | display | display | electromagnetic waves | electromagnetic waves | diffraction | diffraction | holography | holography | lasers | lasers | LEDs | LEDs | spatial light modulation | spatial light modulation | display technologies | display technologies | optical waveguides | optical waveguides | fiberoptic communication | fiberoptic communication | thermal photodetector | thermal photodetector | quantum photodetector | quantum photodetector | optical storage media | optical storage media | disks | disks | 3-D holographic material | 3-D holographic material | coherent optical processor | coherent optical processor | incoherent optical processor | incoherent optical processor | Fourier optics | Fourier optics | acousto-optics | acousto-optics | optoelectronic neural networks | optoelectronic neural networks | optical interconnection device technologies | optical interconnection device technologies | image processing | image processing | pattern recognition | pattern recognition | radar systems | radar systems | adaptive optical systems | adaptive optical systems | 6.161 | 6.161

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.68J Communications and Information Policy (MIT)

Description

This course provides an introduction to the technology and policy context of public communications networks, through critical discussion of current issues in communications policy and their historical roots. The course focuses on underlying rationales and models for government involvement and the complex dynamics introduced by co-evolving technologies, industry structure, and public policy objectives. Cases drawn from cellular, fixed-line, and Internet applications include evolution of spectrum policy and current proposals for reform; the migration to broadband and implications for universal service policies; and property rights associated with digital content. The course lays a foundation for thesis research in this domain.

Subjects

network | networking | telecommunications | data network | internet | services | wireless | public policy | FCC | regulation | information service | telecom | datacom | broadband | bandwidth | open access | spectrum | copyright | RIAA | IP | intellectual property | DRM | privacy | piracy | layered model | interconnection | competition | VoIP | IPTV | network neutrality | ISP | telco | ESD.68 | 6.978

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.68J Communications and Information Policy (MIT)

Description

This course provides an introduction to the technology and policy context of public communications networks, through critical discussion of current issues in communications policy and their historical roots. The course focuses on underlying rationales and models for government involvement and the complex dynamics introduced by co-evolving technologies, industry structure, and public policy objectives. Cases drawn from cellular, fixed-line, and Internet applications include evolution of spectrum policy and current proposals for reform; the migration to broadband and implications for universal service policies; and property rights associated with digital content. The course lays a foundation for thesis research in this domain.

Subjects

network | networking | telecommunications | data network | internet | services | wireless | public policy | FCC | regulation | information service | telecom | datacom | broadband | bandwidth | open access | spectrum | copyright | RIAA | IP | intellectual property | DRM | privacy | piracy | layered model | interconnection | competition | VoIP | IPTV | network neutrality | ISP | telco | ESD.68 | 6.978

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.896 Theory of Parallel Hardware (SMA 5511) (MIT)

Description

6.896 covers mathematical foundations of parallel hardware, from computer arithmetic to physical design, focusing on algorithmic underpinnings. Topics covered include: arithmetic circuits, parallel prefix, systolic arrays, retiming, clocking methodologies, boolean logic, sorting networks, interconnection networks, hypercubic networks, P-completeness, VLSI layout theory, reconfigurable wiring, fat-trees, and area-time complexity. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5511 (Theory of Parallel Hardware).

Subjects

parallel hardware | computer arithmetic | physical design | algorithms | arithmetic circuits | parallel prefix | systolic arrays | retiming | clocking methodologies | boolean logic | sorting networks | interconnection networks | hypercubic networks | P-completeness | VLSI layout theory | reconfigurable wiring | fat-trees | area-time complexity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.637 Optical Signals, Devices, and Systems (MIT)

Description

6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this

Subjects

optical | optical signals | optical devices | transmission | detection | storage | processing | display | electromagnetic waves | diffraction | holography | lasers | LEDs | spatial light modulation | display technologies | optical waveguides | fiberoptic communication | thermal photodetector | quantum photodetector | optical storage media | disks | 3-D holographic material | coherent optical processor | incoherent optical processor | Fourier optics | acousto-optics | optoelectronic neural networks | optical interconnection device technologies | image processing | pattern recognition | radar systems | adaptive optical systems | 6.161

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata