Searching for jukes-cantor : 2 results found | RSS Feed for this search

20.181 Computation for Biological Engineers (MIT) 20.181 Computation for Biological Engineers (MIT)

Description

This course covers the analytical, graphical, and numerical methods supporting the analysis and design of integrated biological systems. Topics include modularity and abstraction in biological systems, mathematical encoding of detailed physical problems, numerical methods for solving the dynamics of continuous and discrete chemical systems, statistics and probability in dynamic systems, applied local and global optimization, simple feedback and control analysis, statistics and probability in pattern recognition. An official course Web site and Wiki is maintained on OpenWetWare: 20.181 Computation for Biological Engineers. This course covers the analytical, graphical, and numerical methods supporting the analysis and design of integrated biological systems. Topics include modularity and abstraction in biological systems, mathematical encoding of detailed physical problems, numerical methods for solving the dynamics of continuous and discrete chemical systems, statistics and probability in dynamic systems, applied local and global optimization, simple feedback and control analysis, statistics and probability in pattern recognition. An official course Web site and Wiki is maintained on OpenWetWare: 20.181 Computation for Biological Engineers.

Subjects

Phylogenetic Inference | Phylogenetic Inference | Molecular Modeling | Molecular Modeling | Protein Design | Protein Design | Discrete Reaction Event Network Modeling | Discrete Reaction Event Network Modeling | Python | Python | genetics | genetics | DNA sequence | DNA sequence | genomics | genomics | gene sequencing | gene sequencing | UPGMA | UPGMA | Newick notation | Newick notation | parsimony | parsimony | downpass | downpass | uppass | uppass | jukes-cantor | jukes-cantor | invertase | invertase | genetic memory | genetic memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.181 Computation for Biological Engineers (MIT)

Description

This course covers the analytical, graphical, and numerical methods supporting the analysis and design of integrated biological systems. Topics include modularity and abstraction in biological systems, mathematical encoding of detailed physical problems, numerical methods for solving the dynamics of continuous and discrete chemical systems, statistics and probability in dynamic systems, applied local and global optimization, simple feedback and control analysis, statistics and probability in pattern recognition. An official course Web site and Wiki is maintained on OpenWetWare: 20.181 Computation for Biological Engineers.

Subjects

Phylogenetic Inference | Molecular Modeling | Protein Design | Discrete Reaction Event Network Modeling | Python | genetics | DNA sequence | genomics | gene sequencing | UPGMA | Newick notation | parsimony | downpass | uppass | jukes-cantor | invertase | genetic memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata