Searching for lactation : 10 results found | RSS Feed for this search

20.440 Analysis of Biological Networks (BE.440) (MIT) 20.440 Analysis of Biological Networks (BE.440) (MIT)

Description

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemica This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemica

Subjects

systems | systems | networks | networks | biochemistry | biochemistry | biology | biology | chemistry | chemistry | chemotaxis | chemotaxis | lactation | lactation | interferon | interferon | response | response | DNA | DNA | replication | replication | translation | translation | transcription | transcription | RNA | RNA | IFN | IFN | signals | signals | signaling | signaling | cellular | cellular | receptor | receptor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.440 Analysis of Biological Networks (MIT) BE.440 Analysis of Biological Networks (MIT)

Description

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemica This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemica

Subjects

systems | systems | networks | networks | biochemistry | biochemistry | biology | biology | chemistry | chemistry | chemotaxis | chemotaxis | lactation | lactation | interferon | interferon | response | response | DNA | DNA | replication | replication | translation | translation | transcription | transcription | RNA | RNA | IFN | IFN | signals | signals | signaling | signaling | cellular | cellular | receptor | receptor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.440 Analysis of Biological Networks (MIT)

Description

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemica

Subjects

systems | networks | biochemistry | biology | chemistry | chemotaxis | lactation | interferon | response | DNA | replication | translation | transcription | RNA | IFN | signals | signaling | cellular | receptor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0023P0001

Description

A 3 year old female entire Yorkshire terrier presenting for a check up 6 weeks post parturition.

Subjects

svmsvet | a0023 | dog | mammary | lactation | postpartumcheck | postpartum | yorkie | yorkshireterrier | clinicalexam

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0023P0001

Description

A 3 year old female entire Yorkshire terrier presenting for a check up 6 weeks post parturition.

Subjects

svmsvet | a0023 | dog | mammary | lactation | postpartumcheck | postpartum | yorkie | yorkshireterrier | clinicalexam

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

E0000P0190

Description

Box of tetra-delta intramammary tubes

Subjects

svmsvet | tetradelta | mastitis | lactation | lactating | cow | cattle | dairy | intramammary | tube | infusion | neomycin | procainpenicillin | prednisolone | steroid

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

E0000P0190

Description

Box of tetra-delta intramammary tubes

Subjects

svmsvet | tetradelta | mastitis | lactation | lactating | cow | cattle | dairy | intramammary | tube | infusion | neomycin | procainpenicillin | prednisolone | steroid

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0023P0001

Description

A 3 year old female entire Yorkshire terrier presenting for a check up 6 weeks post parturition.

Subjects

svmsvet | a0023 | dog | mammary | lactation | postpartumcheck | postpartum | yorkie | yorkshireterrier | clinicalexam

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0023P0001

Description

A 3 year old female entire Yorkshire terrier presenting for a check up 6 weeks post parturition.

Subjects

svmsvet | a0023 | dog | mammary | lactation | postpartumcheck | postpartum | yorkie | yorkshireterrier | clinicalexam

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.440 Analysis of Biological Networks (BE.440) (MIT)

Description

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemica

Subjects

systems | networks | biochemistry | biology | chemistry | chemotaxis | lactation | interferon | response | DNA | replication | translation | transcription | RNA | IFN | signals | signaling | cellular | receptor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata