Searching for lasers : 16 results found | RSS Feed for this search

1

6.977 Semiconductor Optoelectronics: Theory and Design (MIT) 6.977 Semiconductor Optoelectronics: Theory and Design (MIT)

Description

6.977 focuses on the physics of the interaction of photons with semiconductor materials. The band theory of solids is used to calculate the absorption and gain of semiconductor media. The rate equation formalism is used to develop the concepts of laser threshold, population inversion and modulation response. Matrix methods and coupled mode theory are applied to resonator structures such as distributed feedback lasers, tunable lasers and microring devices. The course is also intended to introduce students to noise models for semiconductor devices and to applications of optoelectronic devices to fiber optic communications. This course is worth 12 Engineering Design points. 6.977 focuses on the physics of the interaction of photons with semiconductor materials. The band theory of solids is used to calculate the absorption and gain of semiconductor media. The rate equation formalism is used to develop the concepts of laser threshold, population inversion and modulation response. Matrix methods and coupled mode theory are applied to resonator structures such as distributed feedback lasers, tunable lasers and microring devices. The course is also intended to introduce students to noise models for semiconductor devices and to applications of optoelectronic devices to fiber optic communications. This course is worth 12 Engineering Design points.

Subjects

semiconductor optoelectronics | semiconductor optoelectronics | photons | photons | semiconductor | semiconductor | band theory of solids | band theory of solids | rate equation formalism | rate equation formalism | laser threshold | laser threshold | population inversion | population inversion | modulation response | modulation response | Matrix methods | Matrix methods | coupled mode theory | coupled mode theory | resonator structures | resonator structures | distributed feedback lasers | distributed feedback lasers | tunable lasers | tunable lasers | microring devices | microring devices | noise models | noise models | optoelectronics | optoelectronics | fiber optic communications | fiber optic communications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT) Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance. This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | electrical | optical | and magnetic devices | microstructural characteristics of materials | microstructural characteristics of materials | device-motivated approach | device-motivated approach | emerging technologies | emerging technologies | physical phenomena | physical phenomena | electrical conductivity | electrical conductivity | doping | doping | transistors | transistors | photodectors | photodectors | photovoltaics | photovoltaics | luminescence | luminescence | light emitting diodes | light emitting diodes | lasers | lasers | optical phenomena | optical phenomena | photonics | photonics | ferromagnetism | ferromagnetism | magnetoresistance | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT) Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance. This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | electrical | optical | and magnetic devices | microstructural characteristics of materials | microstructural characteristics of materials | device-motivated approach | device-motivated approach | emerging technologies | emerging technologies | physical phenomena | physical phenomena | electrical conductivity | electrical conductivity | doping | doping | transistors | transistors | photodectors | photodectors | photovoltaics | photovoltaics | luminescence | luminescence | light emitting diodes | light emitting diodes | lasers | lasers | optical phenomena | optical phenomena | photonics | photonics | ferromagnetism | ferromagnetism | magnetoresistance | magnetoresistance | electrical devices | electrical devices | optical devices | optical devices | magnetic devices | magnetic devices | materials | materials | device applications | device applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.161 Modern Optics Project Laboratory (MIT) 6.161 Modern Optics Project Laboratory (MIT)

Description

6.161 explores modern optics through lectures, laboratory exercises, and projects. Topics covered include: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, imaging and transforming properties of lenses, spatial filtering, coherent optical processors, holography, optical properties of materials, lasers, nonlinear optics, electro-optic and acousto-optic materials and devices, optical detectors, fiber optics, and optical communication. This course is worth 12 Engineering Design Points. 6.161 explores modern optics through lectures, laboratory exercises, and projects. Topics covered include: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, imaging and transforming properties of lenses, spatial filtering, coherent optical processors, holography, optical properties of materials, lasers, nonlinear optics, electro-optic and acousto-optic materials and devices, optical detectors, fiber optics, and optical communication. This course is worth 12 Engineering Design Points.

Subjects

modern optics lab | modern optics lab | modern optics | modern optics | laboratory | laboratory | polarization | polarization | light | light | reflection | reflection | refraction | refraction | coherence | coherence | interference | interference | Fraunhofer diffraction | Fraunhofer diffraction | Fresnel diffraction | Fresnel diffraction | imaging | imaging | transforming | transforming | lenses | lenses | spatial filtering | spatial filtering | coherent optical processors | coherent optical processors | holography | holography | optical properties of materials | optical properties of materials | lasers | lasers | nonlinear optics | nonlinear optics | electro-optic | electro-optic | acousto-optic | acousto-optic | optical detectors | optical detectors | fiber optics | fiber optics | optical communication | optical communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.161 Modern Optics Project Laboratory (MIT) 6.161 Modern Optics Project Laboratory (MIT)

Description

6.161 offers an introduction to laboratory optics, optical principles, and optical devices and systems. This course covers a wide range of topics, including: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, holography, imaging and transforming properties of lenses, spatial filtering, two-lens coherent optical processor, optical properties of materials, lasers, electro-optic, acousto-optic and liquid-crystal light modulators, optical detectors, optical waveguides and fiber-optic communication systems. Students engage in extensive oral and written communication exercises. There are 12 engineering design points associated with this subject. 6.161 offers an introduction to laboratory optics, optical principles, and optical devices and systems. This course covers a wide range of topics, including: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, holography, imaging and transforming properties of lenses, spatial filtering, two-lens coherent optical processor, optical properties of materials, lasers, electro-optic, acousto-optic and liquid-crystal light modulators, optical detectors, optical waveguides and fiber-optic communication systems. Students engage in extensive oral and written communication exercises. There are 12 engineering design points associated with this subject.

Subjects

modern optics lab | modern optics lab | modern optics | modern optics | laboratory | laboratory | polarization | polarization | light | light | reflection | reflection | refraction | refraction | coherence | coherence | interference | interference | Fraunhofer diffraction | Fraunhofer diffraction | Fresnel diffraction | Fresnel diffraction | imaging | imaging | transforming | transforming | lenses | lenses | spatial filtering | spatial filtering | coherent optical processors | coherent optical processors | holography | holography | optical properties of materials | optical properties of materials | lasers | lasers | nonlinear optics | nonlinear optics | electro-optic | electro-optic | acousto-optic | acousto-optic | optical detectors | optical detectors | fiber optics | fiber optics | optical communication | optical communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.977 Semiconductor Optoelectronics: Theory and Design (MIT)

Description

6.977 focuses on the physics of the interaction of photons with semiconductor materials. The band theory of solids is used to calculate the absorption and gain of semiconductor media. The rate equation formalism is used to develop the concepts of laser threshold, population inversion and modulation response. Matrix methods and coupled mode theory are applied to resonator structures such as distributed feedback lasers, tunable lasers and microring devices. The course is also intended to introduce students to noise models for semiconductor devices and to applications of optoelectronic devices to fiber optic communications. This course is worth 12 Engineering Design points.

Subjects

semiconductor optoelectronics | photons | semiconductor | band theory of solids | rate equation formalism | laser threshold | population inversion | modulation response | Matrix methods | coupled mode theory | resonator structures | distributed feedback lasers | tunable lasers | microring devices | noise models | optoelectronics | fiber optic communications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.007 Electromagnetic Energy: From Motors to Lasers (MIT) 6.007 Electromagnetic Energy: From Motors to Lasers (MIT)

Description

Includes audio/video content: AV special element video. This course discusses applications of electromagnetic and equivalent quantum mechanical principles to classical and modern devices. It covers energy conversion and power flow in both macroscopic and quantum-scale electrical and electromechanical systems, including electric motors and generators, electric circuit elements, quantum tunneling structures and instruments. It studies photons as waves and particles and their interaction with matter in optoelectronic devices, including solar cells, displays, and lasers. The instructors would like to thank Scott Bradley, David Friend, Ta-Ming Shih, and Yasuhiro Shirasaki for helping to develop the course, and Kyle Hounsell, Ethan Koether, and Dmitri Megretski for their work preparing the lect Includes audio/video content: AV special element video. This course discusses applications of electromagnetic and equivalent quantum mechanical principles to classical and modern devices. It covers energy conversion and power flow in both macroscopic and quantum-scale electrical and electromechanical systems, including electric motors and generators, electric circuit elements, quantum tunneling structures and instruments. It studies photons as waves and particles and their interaction with matter in optoelectronic devices, including solar cells, displays, and lasers. The instructors would like to thank Scott Bradley, David Friend, Ta-Ming Shih, and Yasuhiro Shirasaki for helping to develop the course, and Kyle Hounsell, Ethan Koether, and Dmitri Megretski for their work preparing the lect

Subjects

electromagnetics | electromagnetics | quantum mechanics | quantum mechanics | energy conversion | energy conversion | power flow | power flow | electric motors | electric motors | circuits | circuits | quantum tunneling | quantum tunneling | optoelectronic devices | optoelectronic devices | electromagnetic waves | electromagnetic waves | EM waves | EM waves | semiconductors | semiconductors | lasers | lasers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.637 Optical Signals, Devices, and Systems (MIT) 6.637 Optical Signals, Devices, and Systems (MIT)

Description

6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this 6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this

Subjects

optical | optical | optical signals | optical signals | optical devices | optical devices | transmission | transmission | detection | detection | storage | storage | processing | processing | display | display | electromagnetic waves | electromagnetic waves | diffraction | diffraction | holography | holography | lasers | lasers | LEDs | LEDs | spatial light modulation | spatial light modulation | display technologies | display technologies | optical waveguides | optical waveguides | fiberoptic communication | fiberoptic communication | thermal photodetector | thermal photodetector | quantum photodetector | quantum photodetector | optical storage media | optical storage media | disks | disks | 3-D holographic material | 3-D holographic material | coherent optical processor | coherent optical processor | incoherent optical processor | incoherent optical processor | Fourier optics | Fourier optics | acousto-optics | acousto-optics | optoelectronic neural networks | optoelectronic neural networks | optical interconnection device technologies | optical interconnection device technologies | image processing | image processing | pattern recognition | pattern recognition | radar systems | radar systems | adaptive optical systems | adaptive optical systems | 6.161 | 6.161

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.977 Semiconductor Optoelectronics: Theory and Design (MIT)

Description

6.977 focuses on the physics of the interaction of photons with semiconductor materials. The band theory of solids is used to calculate the absorption and gain of semiconductor media. The rate equation formalism is used to develop the concepts of laser threshold, population inversion and modulation response. Matrix methods and coupled mode theory are applied to resonator structures such as distributed feedback lasers, tunable lasers and microring devices. The course is also intended to introduce students to noise models for semiconductor devices and to applications of optoelectronic devices to fiber optic communications. This course is worth 12 Engineering Design points.

Subjects

semiconductor optoelectronics | photons | semiconductor | band theory of solids | rate equation formalism | laser threshold | population inversion | modulation response | Matrix methods | coupled mode theory | resonator structures | distributed feedback lasers | tunable lasers | microring devices | noise models | optoelectronics | fiber optic communications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.161 Modern Optics Project Laboratory (MIT)

Description

6.161 offers an introduction to laboratory optics, optical principles, and optical devices and systems. This course covers a wide range of topics, including: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, holography, imaging and transforming properties of lenses, spatial filtering, two-lens coherent optical processor, optical properties of materials, lasers, electro-optic, acousto-optic and liquid-crystal light modulators, optical detectors, optical waveguides and fiber-optic communication systems. Students engage in extensive oral and written communication exercises. There are 12 engineering design points associated with this subject.

Subjects

modern optics lab | modern optics | laboratory | polarization | light | reflection | refraction | coherence | interference | Fraunhofer diffraction | Fresnel diffraction | imaging | transforming | lenses | spatial filtering | coherent optical processors | holography | optical properties of materials | lasers | nonlinear optics | electro-optic | acousto-optic | optical detectors | fiber optics | optical communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.007 Electromagnetic Energy: From Motors to Lasers (MIT)

Description

This course discusses applications of electromagnetic and equivalent quantum mechanical principles to classical and modern devices. It covers energy conversion and power flow in both macroscopic and quantum-scale electrical and electromechanical systems, including electric motors and generators, electric circuit elements, quantum tunneling structures and instruments. It studies photons as waves and particles and their interaction with matter in optoelectronic devices, including solar cells, displays, and lasers. The instructors would like to thank Scott Bradley, David Friend, Ta-Ming Shih, and Yasuhiro Shirasaki for helping to develop the course, and Kyle Hounsell, Ethan Koether, and Dmitri Megretski for their work preparing the lecture notes for OCW publication.

Subjects

electromagnetics | quantum mechanics | energy conversion | power flow | electric motors | circuits | quantum tunneling | optoelectronic devices | electromagnetic waves | EM waves | semiconductors | lasers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.637 Optical Signals, Devices, and Systems (MIT)

Description

6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this

Subjects

optical | optical signals | optical devices | transmission | detection | storage | processing | display | electromagnetic waves | diffraction | holography | lasers | LEDs | spatial light modulation | display technologies | optical waveguides | fiberoptic communication | thermal photodetector | quantum photodetector | optical storage media | disks | 3-D holographic material | coherent optical processor | incoherent optical processor | Fourier optics | acousto-optics | optoelectronic neural networks | optical interconnection device technologies | image processing | pattern recognition | radar systems | adaptive optical systems | 6.161

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance | electrical devices | optical devices | magnetic devices | materials | device applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.161 Modern Optics Project Laboratory (MIT)

Description

6.161 explores modern optics through lectures, laboratory exercises, and projects. Topics covered include: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, imaging and transforming properties of lenses, spatial filtering, coherent optical processors, holography, optical properties of materials, lasers, nonlinear optics, electro-optic and acousto-optic materials and devices, optical detectors, fiber optics, and optical communication. This course is worth 12 Engineering Design Points.

Subjects

modern optics lab | modern optics | laboratory | polarization | light | reflection | refraction | coherence | interference | Fraunhofer diffraction | Fresnel diffraction | imaging | transforming | lenses | spatial filtering | coherent optical processors | holography | optical properties of materials | lasers | nonlinear optics | electro-optic | acousto-optic | optical detectors | fiber optics | optical communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata