Searching for levers : 7 results found | RSS Feed for this search

2.003 Modeling Dynamics and Control I (MIT) 2.003 Modeling Dynamics and Control I (MIT)

Description

Includes audio/video content: AV special element video. This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered. Includes audio/video content: AV special element video. This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.

Subjects

modeling | modeling | analysis | analysis | dynamic | dynamic | systems | systems | mechanical | mechanical | translation | translation | uniaxial | uniaxial | rotation | rotation | electrical | electrical | circuits | circuits | coupling | coupling | levers | levers | gears | gears | electro-mechanical | electro-mechanical | devices | devices | linear | linear | differential | differential | equations | equations | state-determined | state-determined | Laplace | Laplace | transforms | transforms | transfer | transfer | functions | functions | frequency | frequency | response | response | Bode | Bode | vibrations | vibrations | modal | modal | open-loop | open-loop | closed-loop | closed-loop | control | control | instability | instability | time-domain | time-domain | controller | controller | frequency-domain | frequency-domain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.364 Advanced Geotechnical Engineering (MIT) 1.364 Advanced Geotechnical Engineering (MIT)

Description

1.364 examines site characterization and geotechnical aspects of the design and construction of foundation systems. Topics include: site investigation (with emphasis on in situ testing), shallow (footings and raftings) and deep (piles and caissons) foundations, excavation support systems, groundwater control, slope stability, soil improvement (compaction, soil reinforcement, etc.), and construction monitoring. This course is a core requirement for the Geotechnical Master of Engineering program at MIT. 1.364 examines site characterization and geotechnical aspects of the design and construction of foundation systems. Topics include: site investigation (with emphasis on in situ testing), shallow (footings and raftings) and deep (piles and caissons) foundations, excavation support systems, groundwater control, slope stability, soil improvement (compaction, soil reinforcement, etc.), and construction monitoring. This course is a core requirement for the Geotechnical Master of Engineering program at MIT.

Subjects

geotechnical engineering | geotechnical engineering | soil | soil | soil mechanics | soil mechanics | foundations | foundations | earth retaining structures | earth retaining structures | site investigation | site investigation | ultimate limit | ultimate limit | serviceability limit | serviceability limit | soil improvement | soil improvement | gravity walls | gravity walls | composite construction | composite construction | reinforced earth | reinforced earth | structural support | structural support | excavations | excavations | bracing | bracing | tieback anchors | tieback anchors | tiebacks | tiebacks | safety factors | safety factors | boreholes | boreholes | soil sampling | soil sampling | stratigraphy | stratigraphy | SPT | SPT | FV | FV | PCPT | PCPT | spread foundation design | spread foundation design | in situ tests | in situ tests | bearing capacity | bearing capacity | strength parameters | strength parameters | allowable settlements | allowable settlements | sand | sand | clay | clay | soil-structure interaction | soil-structure interaction | pile types | pile types | pile selection | pile selection | pile behavior | pile behavior | pile capacity | pile capacity | pile driving | pile driving | pile load tests | pile load tests | slope stability | slope stability | cantilevers | cantilevers | propper walls | propper walls | braced excavations | braced excavations | reinforced soil | reinforced soil | soil nailing | soil nailing | geosynthetic reinforcement | geosynthetic reinforcement

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.003 Modeling Dynamics and Control I (MIT)

Description

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.

Subjects

modeling | analysis | dynamic | systems | mechanical | translation | uniaxial | rotation | electrical | circuits | coupling | levers | gears | electro-mechanical | devices | linear | differential | equations | state-determined | Laplace | transforms | transfer | functions | frequency | response | Bode | vibrations | modal | open-loop | closed-loop | control | instability | time-domain | controller | frequency-domain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.003 Modeling Dynamics and Control I (MIT)

Description

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.

Subjects

modeling | analysis | dynamic | systems | mechanical | translation | uniaxial | rotation | electrical | circuits | coupling | levers | gears | electro-mechanical | devices | linear | differential | equations | state-determined | Laplace | transforms | transfer | functions | frequency | response | Bode | vibrations | modal | open-loop | closed-loop | control | instability | time-domain | controller | frequency-domain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.003 Modeling Dynamics and Control I (MIT)

Description

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.

Subjects

modeling | analysis | dynamic | systems | mechanical | translation | uniaxial | rotation | electrical | circuits | coupling | levers | gears | electro-mechanical | devices | linear | differential | equations | state-determined | Laplace | transforms | transfer | functions | frequency | response | Bode | vibrations | modal | open-loop | closed-loop | control | instability | time-domain | controller | frequency-domain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.364 Advanced Geotechnical Engineering (MIT)

Description

1.364 examines site characterization and geotechnical aspects of the design and construction of foundation systems. Topics include: site investigation (with emphasis on in situ testing), shallow (footings and raftings) and deep (piles and caissons) foundations, excavation support systems, groundwater control, slope stability, soil improvement (compaction, soil reinforcement, etc.), and construction monitoring. This course is a core requirement for the Geotechnical Master of Engineering program at MIT.

Subjects

geotechnical engineering | soil | soil mechanics | foundations | earth retaining structures | site investigation | ultimate limit | serviceability limit | soil improvement | gravity walls | composite construction | reinforced earth | structural support | excavations | bracing | tieback anchors | tiebacks | safety factors | boreholes | soil sampling | stratigraphy | SPT | FV | PCPT | spread foundation design | in situ tests | bearing capacity | strength parameters | allowable settlements | sand | clay | soil-structure interaction | pile types | pile selection | pile behavior | pile capacity | pile driving | pile load tests | slope stability | cantilevers | propper walls | braced excavations | reinforced soil | soil nailing | geosynthetic reinforcement

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.003 Modeling Dynamics and Control I (MIT)

Description

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.

Subjects

modeling | analysis | dynamic | systems | mechanical | translation | uniaxial | rotation | electrical | circuits | coupling | levers | gears | electro-mechanical | devices | linear | differential | equations | state-determined | Laplace | transforms | transfer | functions | frequency | response | Bode | vibrations | modal | open-loop | closed-loop | control | instability | time-domain | controller | frequency-domain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata