Searching for localization : 46 results found | RSS Feed for this search

1 2

9.04 Sensory Systems (MIT) 9.04 Sensory Systems (MIT)

Description

Includes audio/video content: AV lectures. This course examines the neural bases of sensory perception. The focus is on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Topics include visual pattern, color and depth perception, auditory responses and sound localization, and somatosensory perception. Includes audio/video content: AV lectures. This course examines the neural bases of sensory perception. The focus is on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Topics include visual pattern, color and depth perception, auditory responses and sound localization, and somatosensory perception.

Subjects

sensory systems | sensory systems | visual system | visual system | auditory system | auditory system | visual processing | visual processing | auditory processing | auditory processing | perception | perception | sensorimotor control | sensorimotor control | nervous system | nervous system | depth perception | depth perception | auditory responses | auditory responses | speech coding | speech coding | spatial localization | spatial localization | retina | retina | lateral geniculate nucleus | lateral geniculate nucleus | visual cortex | visual cortex | auditory nerve | auditory nerve | Cochlear | Cochlear | brainstem reflexes | brainstem reflexes | sound localization | sound localization | auditory cortex | auditory cortex | echolocation | echolocation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Neural Basis of Vision and Audition (MIT) 9.04 Neural Basis of Vision and Audition (MIT)

Description

This course examines the neural bases of visual and auditory processing for perception and sensorimotor control, focusing on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are studied. This course examines the neural bases of visual and auditory processing for perception and sensorimotor control, focusing on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are studied.

Subjects

visual processing | visual processing | auditory processing | auditory processing | perception | perception | sensorimotor control | sensorimotor control | nervous system | nervous system | depth perception | depth perception | auditory responses | auditory responses | speech coding | speech coding | spatial localization | spatial localization | retina | retina | lateral geniculate nucleus | lateral geniculate nucleus | visual cortex | visual cortex | auditory nerve | auditory nerve | Cochlear | Cochlear | brainstem reflexes | brainstem reflexes | sound localization | sound localization | auditory cortex | auditory cortex

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.512 Theory of Solids II (MIT) 8.512 Theory of Solids II (MIT)

Description

This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory. This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory.

Subjects

Linear response theory | Linear response theory | Fluctuation dissipation theorem | Fluctuation dissipation theorem | Scattering experiment | Scattering experiment | f-sum rule | f-sum rule | Physics of disorder | Physics of disorder | Kubo formula for conductivity | Kubo formula for conductivity | Conductance and sensitivity to boundary conditions | Conductance and sensitivity to boundary conditions | Scaling theory of localization | Scaling theory of localization | Mott variable range hopping | Mott variable range hopping | Superconductor | Superconductor | Transverse response | Transverse response | Landau diamagnetism | Landau diamagnetism | Microscopic derivation of London equation | Microscopic derivation of London equation | Effect of disorder | Effect of disorder | Quasiparticles and coherence factors | Quasiparticles and coherence factors | Tunneling and Josephson effect | Tunneling and Josephson effect | Magnetism | Magnetism | Local moment magnetism | Local moment magnetism | exchange interaction | exchange interaction | Ferro- and anti-ferro magnet and spin wave theory | Ferro- and anti-ferro magnet and spin wave theory | Band magnetism | Band magnetism | Stoner theory | Stoner theory | spin density wave | spin density wave | Local moment in metals | Local moment in metals | Friedel sum rule | Friedel sum rule | Friedel-Anderson model | Friedel-Anderson model | Kondo problem | Kondo problem | Fermi liquid theory | Fermi liquid theory | Electron Green?s function | Electron Green?s function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.723 Neural Coding and Perception of Sound (MIT) HST.723 Neural Coding and Perception of Sound (MIT)

Description

Neural structures and mechanisms mediating the detection, localization and recognition of sounds. We will discuss how acoustic signals are coded by auditory neurons, the impact of these codes on behavioral performance, and the circuitry and cellular mechanisms underlying signal transformations. Topics include temporal coding, neural maps and feature detectors, learning and plasticity, and feedback control. General principles are conveyed by theme discussions of auditory masking, sound localization, musical pitch, speech coding, and cochlear implants. Neural structures and mechanisms mediating the detection, localization and recognition of sounds. We will discuss how acoustic signals are coded by auditory neurons, the impact of these codes on behavioral performance, and the circuitry and cellular mechanisms underlying signal transformations. Topics include temporal coding, neural maps and feature detectors, learning and plasticity, and feedback control. General principles are conveyed by theme discussions of auditory masking, sound localization, musical pitch, speech coding, and cochlear implants.

Subjects

hearing | hearing | neural structures | neural structures | auditory masking | auditory masking | acoustics | acoustics | signal transformations | signal transformations | temporal coding | temporal coding | neural maps | neural maps | feature detectors | feature detectors | learning | learning | plasticity | plasticity | feedback control | feedback control | sound localization | sound localization | musical pitch | musical pitch | speech coding | speech coding | cochlear implants | cochlear implants

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.705 Commutative Algebra (MIT) 18.705 Commutative Algebra (MIT)

Description

In this course students will learn about Noetherian rings and modules, Hilbert basis theorem, Cayley-Hamilton theorem, integral dependence, Noether normalization, the Nullstellensatz, localization, primary decomposition, DVRs, filtrations, length, Artin rings, Hilbert polynomials, tensor products, and dimension theory. In this course students will learn about Noetherian rings and modules, Hilbert basis theorem, Cayley-Hamilton theorem, integral dependence, Noether normalization, the Nullstellensatz, localization, primary decomposition, DVRs, filtrations, length, Artin rings, Hilbert polynomials, tensor products, and dimension theory.

Subjects

rings | rings | ideals | ideals | modules | modules | chain conditions | chain conditions | integral | integral | localization | localization | decomposition | decomposition | dedekind domain | dedekind domain | tensor | tensor | dimension theory | dimension theory | Zorn's lemma | Zorn's lemma | hilbert theorem | hilbert theorem | DVR | DVR | normalization | normalization | artin ring | artin ring | nakayama's lemma | nakayama's lemma | zerodivisors | zerodivisors | noether | noether | nullsetellensatz | nullsetellensatz

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Sensory Systems (MIT)

Description

This course examines the neural bases of sensory perception. The focus is on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Topics include visual pattern, color and depth perception, auditory responses and sound localization, and somatosensory perception.

Subjects

sensory systems | visual system | auditory system | visual processing | auditory processing | perception | sensorimotor control | nervous system | depth perception | auditory responses | speech coding | spatial localization | retina | lateral geniculate nucleus | visual cortex | auditory nerve | Cochlear | brainstem reflexes | sound localization | auditory cortex | echolocation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT) 7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | microorganisms | geochemistry | geochemistry | geochemical agents | geochemical agents | biosphere | biosphere | bacterial genetics | bacterial genetics | carbon metabolism | carbon metabolism | energy metabolism | energy metabolism | productivity | productivity | biogeochemical cycles | biogeochemical cycles | molecular evolution | molecular evolution | population genetics | population genetics | evolution | evolution | population growth | population growth | biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | ecology | ecology | communities | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Introduction to Neuroscience (MIT) 9.01 Introduction to Neuroscience (MIT)

Description

This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain. This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain.

Subjects

neuroscience | neuroscience | vision | vision | hearing | hearing | neuroanatomy | neuroanatomy | color vision | color vision | blind spot | blind spot | retinal phototransduction | retinal phototransduction | cortical maps | cortical maps | primary visual cortex | primary visual cortex | complex cells | complex cells | extrastriate cortex | extrastriate cortex | ear | ear | cochlea | cochlea | basilar membrane | basilar membrane | auditory transduction | auditory transduction | hair cells | hair cells | phase-locking | phase-locking | sound localization | sound localization | auditory cortex | auditory cortex | somatosensory system | somatosensory system | motor system | motor system | synaptic transmission | synaptic transmission | action potential | action potential | sympathetic neurons | sympathetic neurons | parasympathetic neurons | parasympathetic neurons | cellual neurophysiology | cellual neurophysiology | learning | learning | memory | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.422 Field Seminar in International Political Economy (MIT) 17.422 Field Seminar in International Political Economy (MIT)

Description

This field seminar in international political economy covers major theoretical, empirical, and policy perspectives. The basic orientation is disciplinary and comparative (over time and across countries, regions, firms), spanning issues relevant to both industrial and developing states. Special attention is given to challenges and dilemmas shaped by the macro-level consequences of micro-level behavior, and by micro-level adjustments to macro-level influences. This field seminar in international political economy covers major theoretical, empirical, and policy perspectives. The basic orientation is disciplinary and comparative (over time and across countries, regions, firms), spanning issues relevant to both industrial and developing states. Special attention is given to challenges and dilemmas shaped by the macro-level consequences of micro-level behavior, and by micro-level adjustments to macro-level influences.

Subjects

international relations | international relations | political science | political science | economics | economics | wealth | wealth | neoclassical | neoclassical | development | development | ecology | ecology | power | power | trade | trade | capital | capital | foreign investment | foreign investment | intellectual property | intellectual property | migration | migration | foreignpolicy | foreignpolicy | globalization | globalization | internet | internet | sustainability | sustainability | institutions | institutions | foreign policy | foreign policy | IPE | IPE | dual national objectives | dual national objectives | global context | global context | pursuit of power | pursuit of power | pursuit of wealth | pursuit of wealth | international political economy | international political economy | neoclassical economics | neoclassical economics | development economics | development economics | ecological economics | ecological economics | lateral pressure | lateral pressure | perspectives | perspectives | structural views | structural views | power relations | power relations | politics | politics | international trade | international trade | capital flows | capital flows | intellectual property rights | intellectual property rights | international migration | international migration | foreign economic policy | foreign economic policy | international economic institutions | international economic institutions | theoretical perspectives | theoretical perspectives | empirical perspectives | empirical perspectives | policy perspectives | policy perspectives | disciplinary | disciplinary | comparative | comparative | time | time | countries | countries | regions | regions | firms | firms | industrial states | industrial states | developing states | developing states | macro-level consequences | macro-level consequences | micro-level behavior | micro-level behavior | micro-level adjustments | micro-level adjustments | macro-level influences | macro-level influences | complexity | complexity | localization | localization | technology | technology | knowledge economy | knowledge economy | finance | finance | global markets | global markets | political economy | political economy | e-commerce | e-commerce

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT) 7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Neural Basis of Vision and Audition (MIT)

Description

This course examines the neural bases of visual and auditory processing for perception and sensorimotor control, focusing on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are studied.

Subjects

visual processing | auditory processing | perception | sensorimotor control | nervous system | depth perception | auditory responses | speech coding | spatial localization | retina | lateral geniculate nucleus | visual cortex | auditory nerve | Cochlear | brainstem reflexes | sound localization | auditory cortex

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Neural Basis of Vision and Audition (MIT)

Description

This course examines the neural bases of visual and auditory processing for perception and sensorimotor control, focusing on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are studied.

Subjects

visual processing | auditory processing | perception | sensorimotor control | nervous system | depth perception | auditory responses | speech coding | spatial localization | retina | lateral geniculate nucleus | visual cortex | auditory nerve | Cochlear | brainstem reflexes | sound localization | auditory cortex

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT) 7.012 Introduction to Biology (MIT)

Description

All three courses: 7.012, 7.013 and 7.014 cover the same core material which includes: the fundamental principles of biochemistry as they apply to introductory biology, genetics, molecular biology, basic recombinant DNA technology, and gene regulation.In addition, each version of the subject has its own distinctive material, described below. Note: All three versions require a familiarity with some basic chemistry. For details, see the Chemistry Self-evaluation.7.012 focuses on cell biology, immunology, neurobiology, and includes an exploration into current research in cancer, genomics, and molecular medicine. 7.013 focuses on the application of the fundamental principles toward an understanding of cells, human genetics and diseases, infectious agents, cancer, immunology, molecular All three courses: 7.012, 7.013 and 7.014 cover the same core material which includes: the fundamental principles of biochemistry as they apply to introductory biology, genetics, molecular biology, basic recombinant DNA technology, and gene regulation.In addition, each version of the subject has its own distinctive material, described below. Note: All three versions require a familiarity with some basic chemistry. For details, see the Chemistry Self-evaluation.7.012 focuses on cell biology, immunology, neurobiology, and includes an exploration into current research in cancer, genomics, and molecular medicine. 7.013 focuses on the application of the fundamental principles toward an understanding of cells, human genetics and diseases, infectious agents, cancer, immunology, molecular

Subjects

amino acids | amino acids | biochemistry | biochemistry | cancer | cancer | cell biology | cell biology | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | DNA | DNA | endoplasmic reticulum | endoplasmic reticulum | gene regulation | gene regulation | gene structure | gene structure | genetics | genetics | genomics | genomics | immunology | immunology | molecular biology | molecular biology | molecular medicine | molecular medicine | mRNA | mRNA | nervous system | nervous system | neurobiology | neurobiology | PCR | PCR | polymerase chain reaction | polymerase chain reaction | polypeptide chain | polypeptide chain | protein localization | protein localization | protein structure | protein structure | protein synthesis | protein synthesis | proteins | proteins | recombinant DNA | recombinant DNA | replication | replication | ribosome | ribosome | RNA | RNA | stem cells | stem cells | transcription | transcription | translation | translation | virology | virology | biology | biology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.512 Theory of Solids II (MIT) 8.512 Theory of Solids II (MIT)

Description

This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory. This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory.

Subjects

Linear response theory | Linear response theory | Fluctuation dissipation theorem | Fluctuation dissipation theorem | Scattering experiment | Scattering experiment | f-sum rule | f-sum rule | Physics of disorder | Physics of disorder | Kubo formula for conductivity | Kubo formula for conductivity | Conductance and sensitivity to boundary conditions | Conductance and sensitivity to boundary conditions | Scaling theory of localization | Scaling theory of localization | Mott variable range hopping | Mott variable range hopping | Superconductor | Superconductor | Transverse response | Transverse response | Landau diamagnetism | Landau diamagnetism | Microscopic derivation of London equation | Microscopic derivation of London equation | Effect of disorder | Effect of disorder | Quasiparticles and coherence factors | Quasiparticles and coherence factors | Tunneling and Josephson effect | Tunneling and Josephson effect | Magnetism | Magnetism | Local moment magnetism | Local moment magnetism | exchange interaction | exchange interaction | Ferro- and anti-ferro magnet and spin wave theory | Ferro- and anti-ferro magnet and spin wave theory | Band magnetism | Band magnetism | Stoner theory | Stoner theory | spin density wave | spin density wave | Local moment in metals | Local moment in metals | Friedel sum rule | Friedel sum rule | Friedel-Anderson model | Friedel-Anderson model | Kondo problem | Kondo problem | Fermi liquid theory | Fermi liquid theory | Electron Green?s function | Electron Green?s function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.723J Neural Coding and Perception of Sound (MIT) HST.723J Neural Coding and Perception of Sound (MIT)

Description

This course focuses on neural structures and mechanisms mediating the detection, localization and recognition of sounds. Discussions cover how acoustic signals are coded by auditory neurons, the impact of these codes on behavioral performance, and the circuitry and cellular mechanisms underlying signal transformations. Topics include temporal coding, neural maps and feature detectors, learning and plasticity, and feedback control. General principles are conveyed by theme discussions of auditory masking, sound localization, musical pitch, speech coding, and cochlear implants. This course focuses on neural structures and mechanisms mediating the detection, localization and recognition of sounds. Discussions cover how acoustic signals are coded by auditory neurons, the impact of these codes on behavioral performance, and the circuitry and cellular mechanisms underlying signal transformations. Topics include temporal coding, neural maps and feature detectors, learning and plasticity, and feedback control. General principles are conveyed by theme discussions of auditory masking, sound localization, musical pitch, speech coding, and cochlear implants.

Subjects

HST.723 | HST.723 | 9.285 | 9.285 | sound perception | sound perception | neural coding | neural coding | neural structures | neural structures | neural mechanisms | neural mechanisms | sound localization | sound localization | acoustic signals | acoustic signals | auditory neurons | auditory neurons | temporal coding | temporal coding | neural maps | neural maps | feature detectors | feature detectors | learning and plasticity | learning and plasticity | auditory masking | auditory masking | musical pitch | musical pitch | speech coding | speech coding | cochlear implants | cochlear implants | auditory system | auditory system | binaural interactions | binaural interactions | cochlear nucleus | cochlear nucleus | binaural hearing | binaural hearing | frequency selectivity | frequency selectivity | auditory cortex | auditory cortex | scene analysis | scene analysis | object formation | object formation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Introduction to Neuroscience (MIT) 9.01 Introduction to Neuroscience (MIT)

Description

This course begins with the study of nerve cells which includes their structure, the propagation of nerve impulses and transfer of information between nerve cells, the effect of drugs on this process, and the development of nerve cells into the brain and spinal cord. Next, sensory systems such as hearing, vision and touch are covered as well as a discussion on how physical energy such as light is converted into neural signals, where these signals travel in the brain and how they are processed. Other topics include the control of voluntary movement, the neurochemical bases of brain diseases, and those systems which control sleep and consciousness, learning and memory. This course begins with the study of nerve cells which includes their structure, the propagation of nerve impulses and transfer of information between nerve cells, the effect of drugs on this process, and the development of nerve cells into the brain and spinal cord. Next, sensory systems such as hearing, vision and touch are covered as well as a discussion on how physical energy such as light is converted into neural signals, where these signals travel in the brain and how they are processed. Other topics include the control of voluntary movement, the neurochemical bases of brain diseases, and those systems which control sleep and consciousness, learning and memory.

Subjects

neuroscience | neuroscience | vision | vision | hearing | hearing | neuroanatomy | neuroanatomy | color vision | color vision | blind spot | blind spot | retinal phototransduction | retinal phototransduction | center-surround receptive fields | center-surround receptive fields | corticalmaps | corticalmaps | primary visual cortex | primary visual cortex | simple cells | simple cells | complex cells | complex cells | extrastriate cortex | extrastriate cortex | ear | ear | cochlea | cochlea | basilar membrane | basilar membrane | auditory transduction | auditory transduction | hair cells | hair cells | phase-locking | phase-locking | tonotopy | tonotopy | sound localization | sound localization | auditory cortex | auditory cortex | somatosensory system | somatosensory system | motor system | motor system | synaptic transmission | synaptic transmission | action potential | action potential | sympathetic neurons | sympathetic neurons | parasympathetic neurons | parasympathetic neurons | cellual neurophysiology | cellual neurophysiology | learning | learning | memory | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.412J Cognitive Robotics (MIT) 16.412J Cognitive Robotics (MIT)

Description

Cognitive robotics addresses the emerging field of autonomous systems possessing artificial reasoning skills. Successfully-applied algorithms and autonomy models form the basis for study, and provide students an opportunity to design such a system as part of their class project. Theory and application are linked through discussion of real systems such as the Mars Exploration Rover.Technical RequirementsAny text editor can be used to view the .ascii, .binary, .map, and .pddl files found on this course site. Any number of development tools can be used to compile and run the .c and .h files found on this course site. Cognitive robotics addresses the emerging field of autonomous systems possessing artificial reasoning skills. Successfully-applied algorithms and autonomy models form the basis for study, and provide students an opportunity to design such a system as part of their class project. Theory and application are linked through discussion of real systems such as the Mars Exploration Rover.Technical RequirementsAny text editor can be used to view the .ascii, .binary, .map, and .pddl files found on this course site. Any number of development tools can be used to compile and run the .c and .h files found on this course site.

Subjects

cognitive robotics | cognitive robotics | robotic systems | robotic systems | intelligence algorithms | intelligence algorithms | robustness algorithms | robustness algorithms | intelligence paradigms | intelligence paradigms | robustness paradigms | robustness paradigms | autonomous robots | autonomous robots | mars explorers | mars explorers | cooperative air vehicles | cooperative air vehicles | embedded devices | embedded devices | real-time deduction | real-time deduction | real-time search | real-time search | temporal planning | temporal planning | decision-theoretic planning | decision-theoretic planning | contingency planning | contingency planning | dynamic execution | dynamic execution | dynamics re-planning | dynamics re-planning | reasoning | reasoning | path planning | path planning | reasoning under uncertainty | reasoning under uncertainty | mapping | mapping | localization | localization | cooperative robotics | cooperative robotics | distributed robotics | distributed robotics | mars exploration rover | mars exploration rover | nursebot | nursebot | museum tourguide | museum tourguide | human-interaction systems | human-interaction systems | navigation | navigation | state-aware robots | state-aware robots | fast planning | fast planning | cooperative planning | cooperative planning | vision-based exploration | vision-based exploration | preplanning | preplanning | 16.412 | 16.412 | 6.834 | 6.834

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In add The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In add

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.422 Field Seminar in International Political Economy (MIT) 17.422 Field Seminar in International Political Economy (MIT)

Description

This field seminar in international political economy covers major theoretical, empirical, and policy perspectives. The basic orientation is disciplinary and comparative (over time and across countries, regions, firms), spanning issues relevant to both industrial and developing states. Special attention is given to challenges and dilemmas shaped by the macro-level consequences of micro-level behavior, and by micro-level adjustments to macro-level influences. This field seminar in international political economy covers major theoretical, empirical, and policy perspectives. The basic orientation is disciplinary and comparative (over time and across countries, regions, firms), spanning issues relevant to both industrial and developing states. Special attention is given to challenges and dilemmas shaped by the macro-level consequences of micro-level behavior, and by micro-level adjustments to macro-level influences.

Subjects

international relations | international relations | political science | political science | economics | economics | wealth | wealth | neoclassical | neoclassical | development | development | ecology | ecology | power | power | trade | trade | capital | capital | foreign investment | foreign investment | intellectual property | intellectual property | migration | migration | foreignpolicy | foreignpolicy | globalization | globalization | internet | internet | sustainability | sustainability | institutions | institutions | foreign policy | foreign policy | IPE | IPE | dual national objectives | dual national objectives | global context | global context | pursuit of power | pursuit of power | pursuit of wealth | pursuit of wealth | international political economy | international political economy | neoclassical economics | neoclassical economics | development economics | development economics | ecological economics | ecological economics | lateral pressure | lateral pressure | perspectives | perspectives | structural views | structural views | power relations | power relations | politics | politics | international trade | international trade | capital flows | capital flows | intellectual property rights | intellectual property rights | international migration | international migration | foreign economic policy | foreign economic policy | international economic institutions | international economic institutions | theoretical perspectives | theoretical perspectives | empirical perspectives | empirical perspectives | policy perspectives | policy perspectives | disciplinary | disciplinary | comparative | comparative | time | time | countries | countries | regions | regions | firms | firms | industrial states | industrial states | developing states | developing states | macro-level consequences | macro-level consequences | micro-level behavior | micro-level behavior | micro-level adjustments | micro-level adjustments | macro-level influences | macro-level influences | complexity | complexity | localization | localization | technology | technology | knowledge economy | knowledge economy | finance | finance | global markets | global markets | political economy | political economy | e-commerce | e-commerce

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.412J Cognitive Robotics (MIT) 16.412J Cognitive Robotics (MIT)

Description

Cognitive robotics addresses the emerging field of autonomous systems possessing artificial reasoning skills. Successfully-applied algorithms and autonomy models form the basis for study, and provide students an opportunity to design such a system as part of their class project. Theory and application are linked through discussion of real systems such as the Mars Exploration Rover. Cognitive robotics addresses the emerging field of autonomous systems possessing artificial reasoning skills. Successfully-applied algorithms and autonomy models form the basis for study, and provide students an opportunity to design such a system as part of their class project. Theory and application are linked through discussion of real systems such as the Mars Exploration Rover.

Subjects

cognitive robotics | cognitive robotics | robotic systems | robotic systems | intelligence algorithms | intelligence algorithms | robustness algorithms | robustness algorithms | intelligence paradigms | intelligence paradigms | robustness paradigms | robustness paradigms | autonomous robots | autonomous robots | mars explorers | mars explorers | cooperative air vehicles | cooperative air vehicles | embedded devices | embedded devices | real-time deduction | real-time deduction | real-time search | real-time search | temporal planning | temporal planning | decision-theoretic planning | decision-theoretic planning | contingency planning | contingency planning | dynamic execution | dynamic execution | dynamics re-planning | dynamics re-planning | reasoning | reasoning | path planning | path planning | reasoning under uncertainty | reasoning under uncertainty | mapping | mapping | localization | localization | cooperative robotics | cooperative robotics | distributed robotics | distributed robotics | mars exploration rover | mars exploration rover | nursebot | nursebot | museum tourguide | museum tourguide | human-interaction systems | human-interaction systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.422 Field Seminar in International Political Economy (MIT)

Description

This field seminar in international political economy covers major theoretical, empirical, and policy perspectives. The basic orientation is disciplinary and comparative (over time and across countries, regions, firms), spanning issues relevant to both industrial and developing states. Special attention is given to challenges and dilemmas shaped by the macro-level consequences of micro-level behavior, and by micro-level adjustments to macro-level influences.

Subjects

international relations | political science | economics | wealth | neoclassical | development | ecology | power | trade | capital | foreign investment | intellectual property | migration | foreignpolicy | globalization | internet | sustainability | institutions | foreign policy | IPE | dual national objectives | global context | pursuit of power | pursuit of wealth | international political economy | neoclassical economics | development economics | ecological economics | lateral pressure | perspectives | structural views | power relations | politics | international trade | capital flows | intellectual property rights | international migration | foreign economic policy | international economic institutions | theoretical perspectives | empirical perspectives | policy perspectives | disciplinary | comparative | time | countries | regions | firms | industrial states | developing states | macro-level consequences | micro-level behavior | micro-level adjustments | macro-level influences | complexity | localization | technology | knowledge economy | finance | global markets | political economy | e-commerce

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.512 Theory of Solids II (MIT)

Description

This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory.

Subjects

Linear response theory | Fluctuation dissipation theorem | Scattering experiment | f-sum rule | Physics of disorder | Kubo formula for conductivity | Conductance and sensitivity to boundary conditions | Scaling theory of localization | Mott variable range hopping | Superconductor | Transverse response | Landau diamagnetism | Microscopic derivation of London equation | Effect of disorder | Quasiparticles and coherence factors | Tunneling and Josephson effect | Magnetism | Local moment magnetism | exchange interaction | Ferro- and anti-ferro magnet and spin wave theory | Band magnetism | Stoner theory | spin density wave | Local moment in metals | Friedel sum rule | Friedel-Anderson model | Kondo problem | Fermi liquid theory | Electron Green?s function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Introduction to Neuroscience (MIT)

Description

This course begins with the study of nerve cells which includes their structure, the propagation of nerve impulses and transfer of information between nerve cells, the effect of drugs on this process, and the development of nerve cells into the brain and spinal cord. Next, sensory systems such as hearing, vision and touch are covered as well as a discussion on how physical energy such as light is converted into neural signals, where these signals travel in the brain and how they are processed. Other topics include the control of voluntary movement, the neurochemical bases of brain diseases, and those systems which control sleep and consciousness, learning and memory.

Subjects

neuroscience | vision | hearing | neuroanatomy | color vision | blind spot | retinal phototransduction | center-surround receptive fields | corticalmaps | primary visual cortex | simple cells | complex cells | extrastriate cortex | ear | cochlea | basilar membrane | auditory transduction | hair cells | phase-locking | tonotopy | sound localization | auditory cortex | somatosensory system | motor system | synaptic transmission | action potential | sympathetic neurons | parasympathetic neurons | cellual neurophysiology | learning | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata