Searching for loops : 49 results found | RSS Feed for this search

1 2

15.875 Applications of System Dynamics (MIT) 15.875 Applications of System Dynamics (MIT)

Description

15.875 is a project-based course that explores how organizations can use system dynamics to achieve important goals. In small groups, students learn modeling and consulting skills by working on a term-long project with real-life managers. A diverse set of businesses and organizations sponsor class projects, from start-ups to the Fortune 500. The course focuses on gaining practical insight from the system dynamics process, and appeals to people interested in system dynamics, consulting, or managerial policy-making. 15.875 is a project-based course that explores how organizations can use system dynamics to achieve important goals. In small groups, students learn modeling and consulting skills by working on a term-long project with real-life managers. A diverse set of businesses and organizations sponsor class projects, from start-ups to the Fortune 500. The course focuses on gaining practical insight from the system dynamics process, and appeals to people interested in system dynamics, consulting, or managerial policy-making.

Subjects

system dynamics process; modeling; business consulting; managerial policy-making; team project; standard method; process consultation; system consultation; system processes; modeling loops; analyzing loops; diffusion model; problem solving; reference modes; momentum policies; causal loop; client consultations; client consulting; molecules of structure; system dynamics models | system dynamics process; modeling; business consulting; managerial policy-making; team project; standard method; process consultation; system consultation; system processes; modeling loops; analyzing loops; diffusion model; problem solving; reference modes; momentum policies; causal loop; client consultations; client consulting; molecules of structure; system dynamics models | system dynamics process | system dynamics process | modeling | modeling | business consulting | business consulting | managerial policy-making | managerial policy-making | team project | team project | standard method | standard method | process consultation | process consultation | system consultation | system consultation | system processes | system processes | modeling loops | modeling loops | analyzing loops | analyzing loops | diffusion model | diffusion model | problem solving | problem solving | reference modes | reference modes | momentum policies | momentum policies | causal loop | causal loop | client consultations | client consultations | client consulting | client consulting | molecules of structure | molecules of structure | system dynamics models | system dynamics models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Readme file for Introduction to OO Programming in Java

Description

This readme file contains details of links to all the Introduction to OO Programming in Java module's material held on Jorum and information about the module as well.

Subjects

ukoer | programming task guide | programming lecture | programming reading material | software design reading material | classes guide | libraries lecture | classes reading material | classes visual aid | software objects guide | graphics reading material | attributes reading material | attributes visual guide | naming conventions reading material | code reading material | java keywords reading material | variables visual guide | arithmetic reading material | java assignment | making decisions task guide | making decisions lecture | making decisions reading material | boolean expressions visual guide | repetition reading material | while loops visual guide | methods reading material | methods practical | access modifiers reading material | objects reading material | classes assignment | classes practical | child classes task guide | inheritance task guide | extending classes lecture | inheritance reading material | inheritance visual guide | inheritance practical | graphics task guide | awt reading material | graphics visual aid | awt class library reading material | event-driven programming reading material | scrollbars reading material | reflective practice visual guide | mobile phone task guide | mobile phone lecture | fixed repitition reading material | fixed repitition visual guide | mobile phone library reading material | mobile phone reading material | arrays task guide | arrays lecture | arrays reading material | arrays visual guide | creating software objects reading material | software objects visual guide | java practical | generic array list task guide | overriding methods reading material | menu and switch task guide | multi-way decisions reading material | multi-way decisions visual guide | searching task guide | searching lecture | searching reading material | software quality task guide | software quality lecture | software quality reading material | programming assignment | applet reading material | classes visual guide | object-oriented programming | object-oriented | programming | java | problem solving | java program | software design | programming languages | computers | class task guide | class reading material | class assignment | class practical | java classes | variables | attributes | arithmetic | java class | classes and arithmetic | classes | class | decisions | boolean expression | boolean expressions | repetition | methods | aggregate classes | access modifier | access modifiers | child classes | inheritance | child class | graphics | awt class library | fixed repetition | for loop | for loops | array | arrays | iteration | software object | definite iteration | generic lists | generic array list | cast | casting | overriding method | overriding methods | generic list | menu-driven program | menu-driven programs | multi-way decisions | menu and switch | search | searching | software quality | testing | software quality and testing | assessment | computers task guide | programming languages task guide | software design task guide | java program task guide | problem-solving task guide | problem solving task guide | object-oriented programming task guide | java task guide | object-oriented task guide | object oriented task guide | computers lecture | programming languages lecture | software design lecture | java program lecture | problem solving lecture | object-oriented programming lecture | java lecture | object oriented programming lecture | object-oriented lecture | computers reading material | programming languages reading material | java program reading material | problem solving reading material | object-oriented programming reading material | java reading material | object-oriented reading material | object oriented reading material | java classes task guide | variables task guide | attributes task guide | arithmetic task guide | java class task guide | classes and arithmetic task guide | classes task guide | java classes lecture | variables lecture | attributes lecture | arithmetic lecture | java class lecture | classes and arithmetic lecture | classes lecture | class lecture | java classes reading material | variables reading material | java class reading material | classes and arithmetic reading material | java classes visual aid | variables visual aid | attributes visual aid | arithmetic visual aid | java class visual aid | classes and arithmetic visual aid | class visual aid | java visual aid | object-oriented programming visual aid | programming visual aid | object-oriented visual aid | decisions task guide | boolean expression task guide | boolean expressions task guide | repetition task guide | methods task guide | decisions lecture | boolean expression lecture | boolean expressions lecture | repetition lecture | methods lecture | decisions reading material | boolean expression reading material | boolean expressions reading material | decisions visual aid | boolean expression visual aid | boolean expressions visual aid | repetition visual aid | methods visual aid | decisions practical | boolean expression practical | boolean expressions practical | repetition practical | programming practical | object oriented programming practical | object-oriented programming practical | object-oriented practical | object oriented practical | aggregate classes task guide | access modifier task guide | access modifiers task guide | aggregate classes lecture | access modifier lecture | access modifiers lecture | aggregate classes reading material | access modifier reading material | aggregate classes assignment | java classes assignment | access modifier assignment | access modifiers assignment | object oriented programming assignment | object-oriented programming assignment | object-oriented assignment | object oriented assignment | child class task guide | child classes lecture | inheritance lecture | child class lecture | child classes reading material | child class reading material | child classes visual aid | inheritance visual aid | child class visual aid | awt class library task guide | graphics lecture | awt class library lecture | awt class library visual aid | graphics assignment | awt class library assignment | fixed repetition task guide | fixed repetition lecture | fixed repetition visual aid | fixed repetition reading material | for loop task guide | for loops task guide | array task guide | iteration task guide | software object task guide | definite iteration task guide | for loop lecture | for loops lecture | array lecture | iteration lecture | software object lecture | definite iteration lecture | for loop reading material | for loops reading material | array reading material | iteration reading material | software object reading material | definite iteration reading material | for loop visual aid | for loops visual aid | array visual aid | arrays visual aid | iteration visual aid | software object visual aid | definite iteration visual aid | generic lists task guide | cast task guide | casting task guide | overriding method task guide | overriding methods task guide | generic list task guide | generic lists lecture | generic array list lecture | cast lecture | casting lecture | overriding method lecture | overriding methods lecture | generic list lecture | generic lists reading material | generic array list reading material | cast reading material | casting reading material | overriding method reading material | generic list reading material | menu-driven program task guide | menu-driven programs task guide | multi-way decisions task guide | menu-driven program lecture | menu-driven programs lecture | multi-way decisions lecture | menu and switch lecture | menu-driven program reading material | menu-driven programs reading material | menu and switch reading material | menu-driven program visual aid | menu-driven programs visual aid | multi-way decisions visual aid | menu and switch visual aid | search task guide | search lecture | search reading material | testing task guide | software quality and testing task guide | testing lecture | software quality and testing lecture | testing reading material | software quality and testing reading material | assessment reading material | assessment assignment | fixed repetition practical | jcreator guide | g622 | oo | oop | oo programming | awt | oo programming task guide | oop task guide | oo task guide | g622 task guide | oo programming lecture | oop lecture | oo lecture | g622 lecture | oo programming reading material | oop reading material | oo reading material | g622 reading material | g622 visual aid | oop visual aid | oo visual aid | oo programming visual aid | g622 practical | oo practical | oo programming practical | oop practical | g622 assignment | oo assignment | oop assignment | oo programming assignment | awt task guide | awt lecture | awt visual aid | awt assignment | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Introduction to Software Engineering in Java (MIT) 6.092 Introduction to Software Engineering in Java (MIT)

Description

This course is an introduction to Java™ programming and software engineering. It is designed for those who have little or no programming experience in Java and covers concepts useful to 6.005. The focus is on developing high quality, working software that solves real problems. Students will learn the fundamentals of Java, and how to use 3rd party libraries to get more done with less work. Each session includes one hour of lecture and one hour of assisted lab work. Short labs are assigned with each lecture.This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This course is an introduction to Java™ programming and software engineering. It is designed for those who have little or no programming experience in Java and covers concepts useful to 6.005. The focus is on developing high quality, working software that solves real problems. Students will learn the fundamentals of Java, and how to use 3rd party libraries to get more done with less work. Each session includes one hour of lecture and one hour of assisted lab work. Short labs are assigned with each lecture.This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subjects

java; software engineering; programming; introductory programming; object oriented programming; software design; methods; conditionals; loops; arrays; objects; classes; inheritance; abstraction; design; exceptions; eclipse; testing; unit testing; debugging; programming style | java; software engineering; programming; introductory programming; object oriented programming; software design; methods; conditionals; loops; arrays; objects; classes; inheritance; abstraction; design; exceptions; eclipse; testing; unit testing; debugging; programming style | java | java | software engineering | software engineering | programming | programming | introductory programming | introductory programming | object oriented programming | object oriented programming | software design | software design | methods | methods | conditionals | conditionals | loops | loops | arrays | arrays | objects | objects | classes | classes | inheritance | inheritance | abstraction | abstraction | design | design | exceptions | exceptions | eclipse | eclipse | testing | testing | unit testing | unit testing | debugging | debugging | programming style | programming style

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.875 Applications of System Dynamics (MIT)

Description

15.875 is a project-based course that explores how organizations can use system dynamics to achieve important goals. In small groups, students learn modeling and consulting skills by working on a term-long project with real-life managers. A diverse set of businesses and organizations sponsor class projects, from start-ups to the Fortune 500. The course focuses on gaining practical insight from the system dynamics process, and appeals to people interested in system dynamics, consulting, or managerial policy-making.

Subjects

system dynamics process; modeling; business consulting; managerial policy-making; team project; standard method; process consultation; system consultation; system processes; modeling loops; analyzing loops; diffusion model; problem solving; reference modes; momentum policies; causal loop; client consultations; client consulting; molecules of structure; system dynamics models | system dynamics process | modeling | business consulting | managerial policy-making | team project | standard method | process consultation | system consultation | system processes | modeling loops | analyzing loops | diffusion model | problem solving | reference modes | momentum policies | causal loop | client consultations | client consulting | molecules of structure | system dynamics models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.302 Feedback Systems (MIT) 6.302 Feedback Systems (MIT)

Description

This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modeling and compensation of power converter systems, and phase lock loops. This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modeling and compensation of power converter systems, and phase lock loops.

Subjects

feedback system | feedback system | time-domain performance | time-domain performance | frequency-domain performance. stability | frequency-domain performance. stability | root locus method | root locus method | Nyquist criterion | Nyquist criterion | frequency-domain design | frequency-domain design | compensation techniques | compensation techniques | internal compensation | internal compensation | external compensation | external compensation | operational amplifiers | operational amplifiers | power coverter systems | power coverter systems | phase lock loops | phase lock loops

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Sloops at anchor in harbour, lighthouse on outcrop in distance Sloops at anchor in harbour, lighthouse on outcrop in distance

Description

Subjects

lighthouse | lighthouse | poster | poster | coast | coast | isleofman | isleofman | cameraobscura | cameraobscura | slipway | slipway | douglashead | douglashead | sloops | sloops | nationallibraryofireland | nationallibraryofireland | bathingplace | bathingplace | portskillion | portskillion | douglasheadlighthouse | douglasheadlighthouse | masonphotographiccollection | masonphotographiccollection | thomasholmesmason | thomasholmesmason | thomashmasonsonslimited | thomashmasonsonslimited | thedanites | thedanites

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.189 A Gentle Introduction to Programming Using Python (MIT) 6.189 A Gentle Introduction to Programming Using Python (MIT)

Description

This course will provide a gentle, yet intense, introduction to programming using Python for highly motivated students with little or no prior experience in programming. The course will focus on planning and organizing programs, as well as the grammar of the Python programming language. The course is designed to help prepare students for 6.01 Introduction to EECS I. 6.01 assumes some knowledge of Python upon entering; the course material for 6.189 has been specially designed to make sure that concepts important to 6.01 are covered. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This course will provide a gentle, yet intense, introduction to programming using Python for highly motivated students with little or no prior experience in programming. The course will focus on planning and organizing programs, as well as the grammar of the Python programming language. The course is designed to help prepare students for 6.01 Introduction to EECS I. 6.01 assumes some knowledge of Python upon entering; the course material for 6.189 has been specially designed to make sure that concepts important to 6.01 are covered. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subjects

Python | Python | conditionals | conditionals | loops | loops | defining functions | defining functions | strings | strings | lists | lists | list comprehensions | list comprehensions | recursion | recursion | tuples | tuples | dictionaries | dictionaries | classes | classes | inheritance | inheritance | scoping | scoping

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Introduction to Programming in Java (MIT) 6.092 Introduction to Programming in Java (MIT)

Description

This course is an introduction to software engineering, using the Java™ programming language. It covers concepts useful to 6.005. Students will learn the fundamentals of Java. The focus is on developing high quality, working software that solves real problems. The course is designed for students with some programming experience, but if you have none and are motivated you will do fine. Students who have taken 6.005 should not take this course. Each class is composed of one hour of lecture and one hour of assisted lab work. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This course is an introduction to software engineering, using the Java™ programming language. It covers concepts useful to 6.005. Students will learn the fundamentals of Java. The focus is on developing high quality, working software that solves real problems. The course is designed for students with some programming experience, but if you have none and are motivated you will do fine. Students who have taken 6.005 should not take this course. Each class is composed of one hour of lecture and one hour of assisted lab work. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subjects

software engineering | software engineering | Java fundamentals | Java fundamentals | methods | methods | conditionals | conditionals | loops | loops | arrays | arrays | objects | objects | classes | classes | object oriented programming | object oriented programming | access control | access control | class scope | class scope | design | design | debugging | debugging | interfaces | interfaces | inheritance | inheritance | exceptions | exceptions | input/output | input/output

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.302 Feedback Systems (MIT) 6.302 Feedback Systems (MIT)

Description

This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modeling and compensation of power converter systems, and phase lock loops. This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modeling and compensation of power converter systems, and phase lock loops.

Subjects

feedback system | feedback system | time-domain performance | time-domain performance | frequency-domain performance. stability | frequency-domain performance. stability | root locus method | root locus method | Nyquist criterion | Nyquist criterion | frequency-domain design | frequency-domain design | compensation techniques | compensation techniques | internal compensation | internal compensation | external compensation | external compensation | operational amplifiers | operational amplifiers | power coverter systems | power coverter systems | phase lock loops | phase lock loops

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.14 Analysis and Design of Feedback Control Systems (MIT) 2.14 Analysis and Design of Feedback Control Systems (MIT)

Description

This course develops the fundamentals of feedback control using linear transfer function system models. Topics covered include analysis in time and frequency domains; design in the s-plane (root locus) and in the frequency domain (loop shaping); describing functions for stability of certain non-linear systems; extension to state variable systems and multivariable control with observers; discrete and digital hybrid systems and use of z-plane design. Students will complete an extended design case study. Students taking the graduate version (2.140) will attend the recitation sessions and complete additional assignments. This course develops the fundamentals of feedback control using linear transfer function system models. Topics covered include analysis in time and frequency domains; design in the s-plane (root locus) and in the frequency domain (loop shaping); describing functions for stability of certain non-linear systems; extension to state variable systems and multivariable control with observers; discrete and digital hybrid systems and use of z-plane design. Students will complete an extended design case study. Students taking the graduate version (2.140) will attend the recitation sessions and complete additional assignments.

Subjects

feedback loops | feedback loops | control systems | control systems | compensation | compensation | Bode plots | Bode plots | Nyquist plots | Nyquist plots | state space | state space | frequency domain | frequency domain | time domain | time domain | transfer functions | transfer functions | Laplace transform | Laplace transform | root locus | root locus | op-amps | op-amps | gears | gears | motors | motors | actuators | actuators | nonlinear systems | nonlinear systems | stability theory | stability theory | dynamic feedback | dynamic feedback | mechanical engineering problem archive | mechanical engineering problem archive

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.14 Analysis and Design of Feedback Control Systems (MIT) 2.14 Analysis and Design of Feedback Control Systems (MIT)

Description

This course develops the fundamentals of feedback control using linear transfer function system models. It covers analysis in time and frequency domains; design in the s-plane (root locus) and in the frequency domain (loop shaping); describing functions for stability of certain non-linear systems; extension to state variable systems and multivariable control with observers; discrete and digital hybrid systems and the use of z-plane design. Assignments include extended design case studies and capstone group projects. Graduate students are expected to complete additional assignments. This course develops the fundamentals of feedback control using linear transfer function system models. It covers analysis in time and frequency domains; design in the s-plane (root locus) and in the frequency domain (loop shaping); describing functions for stability of certain non-linear systems; extension to state variable systems and multivariable control with observers; discrete and digital hybrid systems and the use of z-plane design. Assignments include extended design case studies and capstone group projects. Graduate students are expected to complete additional assignments.

Subjects

feedback loops | feedback loops | compensation | compensation | Bode plots | Bode plots | Nyquist plots | Nyquist plots | state space | state space | frequency domain | frequency domain | time domain | time domain | transfer functions | transfer functions | Laplace transform | Laplace transform | root locus | root locus | op-amps | op-amps | gears | gears | motors | motors | actuators | actuators | nonlinear systems | nonlinear systems | stability theory | stability theory | control systems | control systems | dynamic feedback | dynamic feedback | mechanical engineering problem archive | mechanical engineering problem archive

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Introduction to OO Programming in Java - Arrays and For Loops

Description

This task guide forms part of the "Arrays and For Loops" topic in the Introduction to OO Programming in Java module.

Subjects

ukoer | arrays task guide | for loop | for loops | array | arrays | iteration | software object | definite iteration | object-oriented | programming | object-oriented programming | java | for loop task guide | for loops task guide | array task guide | iteration task guide | software object task guide | definite iteration task guide | object-oriented task guide | programming task guide | object-oriented programming task guide | java task guide | object oriented task guide | g622 | oo programming | oop | oo | g622 task guide | oo programming task guide | oop task guide | oo task guide | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Introduction to OO Programming in Java - Arrays and For Loops

Description

This lecture forms part of the "Arrays and For Loops" topic in the Introduction to OO Programming in Java module.

Subjects

ukoer | arrays lecture | for loop | for loops | array | arrays | iteration | software object | definite iteration | object-oriented | programming | object-oriented programming | java | for loop lecture | for loops lecture | array lecture | iteration lecture | software object lecture | definite iteration lecture | object-oriented lecture | programming lecture | object-oriented programming lecture | java lecture | object oriented programming lecture | g622 | oo programming | oop | oo | g622 lecture | oo programming lecture | oop lecture | oo lecture | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Introduction to OO Programming in Java - Arrays and For Loops

Description

This reading material forms part of the "Arrays and For Loops" topic in the Introduction to OO Programming in Java module.

Subjects

ukoer | arrays reading material | for loop | for loops | array | arrays | iteration | software object | definite iteration | object-oriented | programming | object-oriented programming | java | for loop reading material | for loops reading material | array reading material | iteration reading material | software object reading material | definite iteration reading material | object-oriented reading material | programming reading material | object-oriented programming reading material | java reading material | object oriented reading material | g622 | oo programming | oop | oo | g622 reading material | oo programming reading material | oop reading material | oo reading material | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Introduction to OO Programming in Java - Arrays and For Loops

Description

This visual aid forms part of the "Arrays and For Loops" topic in the Introduction to OO Programming in Java module.

Subjects

ukoer | arrays visual guide | for loop | for loops | array | arrays | iteration | software object | definite iteration | object-oriented | programming | object-oriented programming | java | for loop visual aid | for loops visual aid | array visual aid | arrays visual aid | iteration visual aid | software object visual aid | definite iteration visual aid | object-oriented visual aid | programming visual aid | object-oriented programming visual aid | java visual aid | g622 | oo programming | oop | oo | g622 visual aid | oo programming visual aid | oop visual aid | oo visual aid | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Introduction to OO Programming in Java - Arrays and For Loops

Description

This reading material forms part of the "Arrays and For Loops" topic in the Introduction to OO Programming in Java module.

Subjects

ukoer | creating software objects reading material | for loop | for loops | array | arrays | iteration | software object | definite iteration | object-oriented | programming | object-oriented programming | java | for loop reading material | for loops reading material | array reading material | arrays reading material | iteration reading material | software object reading material | definite iteration reading material | object-oriented reading material | programming reading material | object-oriented programming reading material | java reading material | object oriented reading material | g622 | oo programming | oop | oo | g622 reading material | oo programming reading material | oop reading material | oo reading material | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.821 String Theory and Holographic Duality (MIT) 8.821 String Theory and Holographic Duality (MIT)

Description

Includes audio/video content: AV lectures. This string theory course focuses on holographic duality (also known as gauge / gravity duality or AdS / CFT) as a novel method of approaching and connecting a range of diverse subjects, including quantum gravity / black holes, QCD at extreme conditions, exotic condensed matter systems, and quantum information. Includes audio/video content: AV lectures. This string theory course focuses on holographic duality (also known as gauge / gravity duality or AdS / CFT) as a novel method of approaching and connecting a range of diverse subjects, including quantum gravity / black holes, QCD at extreme conditions, exotic condensed matter systems, and quantum information.

Subjects

string theory | string theory | holographic duality | holographic duality | Weinberg-Witten | Weinberg-Witten | AdS/CFT duality | AdS/CFT duality | black holes | black holes | Holographic principle | Holographic principle | Wilson loops | Wilson loops | Entanglement entropy | Entanglement entropy | Quark-gluon plasmas | Quark-gluon plasmas | quantum gravity | quantum gravity | Hamilton-Jacobi | Hamilton-Jacobi | D-branes | D-branes | Large-N Expansion | Large-N Expansion | Light-Cone Gauge | Light-Cone Gauge

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Introduction to OO Programming in Java - Arrays and For Loops

Description

This reading material forms part of the "Arrays and For Loops" topic in the Introduction to OO Programming in Java module.

Subjects

ukoer | software objects visual guide | for loop | for loops | array | arrays | iteration | software object | definite iteration | object-oriented | programming | object-oriented programming | java | for loop visual aid | for loops visual aid | array visual aid | arrays visual aid | iteration visual aid | software object visual aid | definite iteration visual aid | object-oriented visual aid | programming visual aid | object-oriented programming visual aid | java visual aid | g622 | oo programming | oop | oo | g622 visual aid | oo programming visual aid | oop visual aid | oo visual aid | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Introduction to OO Programming in Java - Arrays and For Loops

Description

This reading material forms part of the "Arrays and For Loops" topic in the Introduction to OO Programming in Java module.

Subjects

ukoer | software objects visual guide | for loop | for loops | array | arrays | iteration | software object | definite iteration | object-oriented | programming | object-oriented programming | java | for loop visual aid | for loops visual aid | array visual aid | arrays visual aid | iteration visual aid | software object visual aid | definite iteration visual aid | object-oriented visual aid | programming visual aid | object-oriented programming visual aid | java visual aid | g622 | oo programming | oop | oo | g622 visual aid | oo programming visual aid | oop visual aid | oo visual aid | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.776 High Speed Communication Circuits (MIT) 6.776 High Speed Communication Circuits (MIT)

Description

6.776 covers circuit level design issues of high speed communication systems, with primary focus being placed on wireless and broadband data link applications. Specific circuit topics include transmission lines, high speed and low noise amplifiers, VCO's, mixers, power amps, high speed digital circuits, and frequency synthesizers. In addition to learning analysis skills for the above items, students will gain a significant amount of experience in simulating RF circuits in SPICE and also building RF circuits within a lab project. 6.776 covers circuit level design issues of high speed communication systems, with primary focus being placed on wireless and broadband data link applications. Specific circuit topics include transmission lines, high speed and low noise amplifiers, VCO's, mixers, power amps, high speed digital circuits, and frequency synthesizers. In addition to learning analysis skills for the above items, students will gain a significant amount of experience in simulating RF circuits in SPICE and also building RF circuits within a lab project.

Subjects

integrated circuit design | integrated circuit design | communication systems | communication systems | wireless | wireless | broadband | broadband | data links | data links | circuit blocks | circuit blocks | communication transceivers | communication transceivers | phase-locked loops | phase-locked loops | PLL | PLL | narrowband | narrowband | low-noise | low-noise | amplifiers | amplifiers | mixers | mixers | voltage-controlled oscillators | voltage-controlled oscillators | power amplifiers | power amplifiers | high speed frequency dividers | high speed frequency dividers | passive component design | passive component design | on-chip inductors | on-chip inductors | capacitors | capacitors | transmission line modeling | transmission line modeling | S-parameters | S-parameters | Smith Chart | Smith Chart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Introduction to Software Engineering in Java (MIT)

Description

This course is an introduction to Java™ programming and software engineering. It is designed for those who have little or no programming experience in Java and covers concepts useful to 6.005. The focus is on developing high quality, working software that solves real problems. Students will learn the fundamentals of Java, and how to use 3rd party libraries to get more done with less work. Each session includes one hour of lecture and one hour of assisted lab work. Short labs are assigned with each lecture.This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subjects

java; software engineering; programming; introductory programming; object oriented programming; software design; methods; conditionals; loops; arrays; objects; classes; inheritance; abstraction; design; exceptions; eclipse; testing; unit testing; debugging; programming style | java | software engineering | programming | introductory programming | object oriented programming | software design | methods | conditionals | loops | arrays | objects | classes | inheritance | abstraction | design | exceptions | eclipse | testing | unit testing | debugging | programming style

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.852 Manufacturing Systems Analysis (MIT) 2.852 Manufacturing Systems Analysis (MIT)

Description

This course covers the following topics: models of manufacturing systems, including transfer lines and flexible manufacturing systems; calculation of performance measures, including throughput, in-process inventory, and meeting production commitments; real-time control of scheduling; effects of machine failure, set-ups, and other disruptions on system performance. This course covers the following topics: models of manufacturing systems, including transfer lines and flexible manufacturing systems; calculation of performance measures, including throughput, in-process inventory, and meeting production commitments; real-time control of scheduling; effects of machine failure, set-ups, and other disruptions on system performance.

Subjects

transfer lines | transfer lines | flexible manufacturing systems | flexible manufacturing systems | performance measures | performance measures | throughput | throughput | in-process inventory | in-process inventory | real-time scheduling | real-time scheduling | machine failure | machine failure | buffer design | buffer design | optimization | optimization | probability | probability | Markov chains | Markov chains | long lines | long lines | quality/quantity | quality/quantity | loops | loops | assembly/disassembly systems | assembly/disassembly systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Introduction to Software Engineering in Java (MIT) 6.092 Introduction to Software Engineering in Java (MIT)

Description

This course is an introduction to software engineering, using the Java™ programming language; it covers concepts useful to 6.005. The focus is on developing high quality, working software that solves real problems. Students will learn the fundamentals of Java, and how to use 3rd party libraries to get more done with less work. The class is designed for students with some programming experience, but if you have none and are motivated you will do fine. Students who have taken 6.170 or 6.005 should not take this course. Each session includes one hour of lecture and one hour of assisted lab work. Short labs are assigned with each lecture.This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of Januar This course is an introduction to software engineering, using the Java™ programming language; it covers concepts useful to 6.005. The focus is on developing high quality, working software that solves real problems. Students will learn the fundamentals of Java, and how to use 3rd party libraries to get more done with less work. The class is designed for students with some programming experience, but if you have none and are motivated you will do fine. Students who have taken 6.170 or 6.005 should not take this course. Each session includes one hour of lecture and one hour of assisted lab work. Short labs are assigned with each lecture.This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of Januar

Subjects

java | java | software engineering | software engineering | programming | programming | introductory programming | introductory programming | object oriented programming | object oriented programming | software design | software design | methods | methods | conditionals | conditionals | loops | loops | arrays | arrays | objects | objects | classes | classes | inheritance | inheritance | abstraction | abstraction | design | design | exceptions | exceptions | belote | belote | social network | social network | chat client and server | chat client and server

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.976 High Speed Communication Circuits and Systems (MIT) 6.976 High Speed Communication Circuits and Systems (MIT)

Description

6.976 covers circuit and system level design issues of high speed communication systems, with primary focus being placed on wireless and broadband data link applications. Specific circuit topics include transmission lines, high speed and low noise amplifiers, VCO's, and high speed digital circuits. Specific system topics include frequency synthesizers, clock and data recovery circuits, and GMSK transceivers. In addition to learning analysis skills for the above items, students will gain a significant amount of experience in simulating circuits in SPICE and systems in CppSim (a custom C++ simulator). 6.976 covers circuit and system level design issues of high speed communication systems, with primary focus being placed on wireless and broadband data link applications. Specific circuit topics include transmission lines, high speed and low noise amplifiers, VCO's, and high speed digital circuits. Specific system topics include frequency synthesizers, clock and data recovery circuits, and GMSK transceivers. In addition to learning analysis skills for the above items, students will gain a significant amount of experience in simulating circuits in SPICE and systems in CppSim (a custom C++ simulator).

Subjects

high speed communication circuits | high speed communication circuits | high speed communication systems | high speed communication systems | communication | communication | circuit | circuit | wireless | wireless | broadband | broadband | data link | data link | transistor level design | transistor level design | high speed amplifiers | high speed amplifiers | mixers | mixers | VCO's | VCO's | registers | registers | gates | gates | phase locked loops | phase locked loops | transmission line effects | transmission line effects | circuit design | circuit design | narrowband | narrowband | behavioral level simulation techniques | behavioral level simulation techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.302 Feedback Systems (MIT) 6.302 Feedback Systems (MIT)

Description

This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modelling and compensation of power coverter systems and phase lock loops. This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modelling and compensation of power coverter systems and phase lock loops.

Subjects

feedback system | feedback system | time-domain performance | time-domain performance | frequency-domain performance | frequency-domain performance | stability | stability | root locus method | root locus method | Nyquist criterion | Nyquist criterion | frequency-domain design | frequency-domain design | compensation techniques | compensation techniques | internal compensation | internal compensation | external compensation | external compensation | operational amplifiers | operational amplifiers | power coverter systems | power coverter systems | phase lock loops | phase lock loops

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata