Searching for magnetoresistance : 5 results found | RSS Feed for this search

Magnetic Materials and Devices (MIT) Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance. This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | electrical | optical | and magnetic devices | microstructural characteristics of materials | microstructural characteristics of materials | device-motivated approach | device-motivated approach | emerging technologies | emerging technologies | physical phenomena | physical phenomena | electrical conductivity | electrical conductivity | doping | doping | transistors | transistors | photodectors | photodectors | photovoltaics | photovoltaics | luminescence | luminescence | light emitting diodes | light emitting diodes | lasers | lasers | optical phenomena | optical phenomena | photonics | photonics | ferromagnetism | ferromagnetism | magnetoresistance | magnetoresistance | electrical devices | electrical devices | optical devices | optical devices | magnetic devices | magnetic devices | materials | materials | device applications | device applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT) Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance. This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | electrical | optical | and magnetic devices | microstructural characteristics of materials | microstructural characteristics of materials | device-motivated approach | device-motivated approach | emerging technologies | emerging technologies | physical phenomena | physical phenomena | electrical conductivity | electrical conductivity | doping | doping | transistors | transistors | photodectors | photodectors | photovoltaics | photovoltaics | luminescence | luminescence | light emitting diodes | light emitting diodes | lasers | lasers | optical phenomena | optical phenomena | photonics | photonics | ferromagnetism | ferromagnetism | magnetoresistance | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance | electrical devices | optical devices | magnetic devices | materials | device applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata