Searching for mapping : 114 results found | RSS Feed for this search

1 2 3 4 5

12.114 Field Geology I (MIT) 12.114 Field Geology I (MIT)

Description

The course provides students with (1) an introduction to the geologic history of western North America, with particular emphasis on our field camp location and (2) an introduction to both digital and traditional techniques of geological field study. The weather permitting, several weekend field exercises provide practical experience in preparation for Field Geology II (12.115). It presents introductory material on the regional geology of the locale of 12.115. The course provides students with (1) an introduction to the geologic history of western North America, with particular emphasis on our field camp location and (2) an introduction to both digital and traditional techniques of geological field study. The weather permitting, several weekend field exercises provide practical experience in preparation for Field Geology II (12.115). It presents introductory material on the regional geology of the locale of 12.115.

Subjects

geologic mapping | geologic mapping | geologic mapping techniques | geologic mapping techniques | field geology | field geology | science writing | science writing | rock identification | rock identification | rock classification | rock classification | regional geology | regional geology | North American geology | North American geology | regional tectonics | regional tectonics | geologic maps | geologic maps | GIS | GIS | digital mapping | digital mapping | ESRI Arc Applications | ESRI Arc Applications | iPAQ handheld computers | iPAQ handheld computers | field manual | field manual | Western US geology | Western US geology | lithologic and structural symbology | lithologic and structural symbology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.112 Functions of a Complex Variable (MIT) 18.112 Functions of a Complex Variable (MIT)

Description

This is an advanced undergraduate course dealing with calculus in one complex variable with geometric emphasis. Since the course Analysis I (18.100B) is a prerequisite, topological notions like compactness, connectedness, and related properties of continuous functions are taken for granted. This course offers biweekly problem sets with solutions, two term tests and a final exam, all with solutions. This is an advanced undergraduate course dealing with calculus in one complex variable with geometric emphasis. Since the course Analysis I (18.100B) is a prerequisite, topological notions like compactness, connectedness, and related properties of continuous functions are taken for granted. This course offers biweekly problem sets with solutions, two term tests and a final exam, all with solutions.

Subjects

functions of one complex variable | functions of one complex variable | Cauchy's theorem | Cauchy's theorem | holomorphic functions | holomorphic functions | meromorphic functions | meromorphic functions | residues | residues | contour integrals | contour integrals | conformal mapping | conformal mapping | Infinite series and products | Infinite series and products | the gamma function | the gamma function | the Mittag-Leffler theorem | the Mittag-Leffler theorem | Harmonic functions | Harmonic functions | Dirichlet's problem | Dirichlet's problem | The Riemann mapping theorem | The Riemann mapping theorem | The Riemann Zeta function | The Riemann Zeta function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.112 Functions of a Complex Variable (MIT) 18.112 Functions of a Complex Variable (MIT)

Description

This is an advanced undergraduate course dealing with calculus in one complex variable with geometric emphasis. Since the course Analysis I (18.100B) is a prerequisite, topological notions like compactness, connectedness, and related properties of continuous functions are taken for granted.This course offers biweekly problem sets with solutions, two term tests and a final exam, all with solutions. This is an advanced undergraduate course dealing with calculus in one complex variable with geometric emphasis. Since the course Analysis I (18.100B) is a prerequisite, topological notions like compactness, connectedness, and related properties of continuous functions are taken for granted.This course offers biweekly problem sets with solutions, two term tests and a final exam, all with solutions.

Subjects

functions of one complex variable | functions of one complex variable | Cauchy's theorem | Cauchy's theorem | holomorphic functions | holomorphic functions | meromorphic functions | meromorphic functions | residues | residues | contour integrals | contour integrals | conformal mapping | conformal mapping | Infinite series and products | Infinite series and products | the gamma function | the gamma function | the Mittag-Leffler theorem | the Mittag-Leffler theorem | Harmonic functions | Harmonic functions | Dirichlet's problem | Dirichlet's problem | The Riemann mapping theorem | The Riemann mapping theorem | The Riemann Zeta function | The Riemann Zeta function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Behavioral Genetics (MIT) Behavioral Genetics (MIT)

Description

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications. How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.

Subjects

cognition | cognition | language | language | emotion | emotion | personality | personality | behavior | behavior | gene mapping | gene mapping | personality traits | personality traits | Mendelian genetics | Mendelian genetics | genetic mapping techniques | genetic mapping techniques | statistical analysis | statistical analysis | environmental | environmental | genetic programs | genetic programs | evolutionary genetics | evolutionary genetics | social | social | ethical | ethical | 9.19 | 9.19 | 7.66 | 7.66

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Behavioral Genetics (MIT) Behavioral Genetics (MIT)

Description

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications. How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.

Subjects

cognition | cognition | language | language | emotion | emotion | personality | personality | behavior | behavior | gene mapping | gene mapping | personality traits | personality traits | Mendelian genetics | Mendelian genetics | genetic mapping techniques | genetic mapping techniques | statistical analysis | statistical analysis | environmental | environmental | genetic programs | genetic programs | evolutionary genetics | evolutionary genetics | social | social | ethical | ethical | 9.19 | 9.19 | 7.66 | 7.66

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.112 Functions of a Complex Variable (MIT) 18.112 Functions of a Complex Variable (MIT)

Description

This is an advanced undergraduate course dealing with calculus in one complex variable with geometric emphasis. Since the course Analysis I (18.100B) is a prerequisite, topological notions like compactness, connectedness, and related properties of continuous functions are taken for granted.This course offers biweekly problem sets with solutions, two term tests and a final exam, all with solutions. This is an advanced undergraduate course dealing with calculus in one complex variable with geometric emphasis. Since the course Analysis I (18.100B) is a prerequisite, topological notions like compactness, connectedness, and related properties of continuous functions are taken for granted.This course offers biweekly problem sets with solutions, two term tests and a final exam, all with solutions.

Subjects

functions of one complex variable | functions of one complex variable | Cauchy's theorem | Cauchy's theorem | holomorphic functions | holomorphic functions | meromorphic functions | meromorphic functions | residues | residues | contour integrals | contour integrals | conformal mapping | conformal mapping | Infinite series and products | Infinite series and products | the gamma function | the gamma function | the Mittag-Leffler theorem | the Mittag-Leffler theorem | Harmonic functions | Harmonic functions | Dirichlet's problem | Dirichlet's problem | The Riemann mapping theorem | The Riemann mapping theorem | The Riemann Zeta function | The Riemann Zeta function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.114 Field Geology I (MIT)

Description

The course provides students with (1) an introduction to the geologic history of western North America, with particular emphasis on our field camp location and (2) an introduction to both digital and traditional techniques of geological field study. The weather permitting, several weekend field exercises provide practical experience in preparation for Field Geology II (12.115). It presents introductory material on the regional geology of the locale of 12.115.

Subjects

geologic mapping | geologic mapping techniques | field geology | science writing | rock identification | rock classification | regional geology | North American geology | regional tectonics | geologic maps | GIS | digital mapping | ESRI Arc Applications | iPAQ handheld computers | field manual | Western US geology | lithologic and structural symbology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis (MIT) HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis (MIT)

Description

This team taught, multidisciplinary course covers the fundamentals of magnetic resonance imaging relevant to the conduct and interpretation of human brain mapping studies. The challenges inherent in advancing our knowledge about brain function using fMRI are presented first to put the work in context. The course then provides in depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include fMRI experimental design including block design, event related and exploratory data analysis methods, building and applying statistical mod This team taught, multidisciplinary course covers the fundamentals of magnetic resonance imaging relevant to the conduct and interpretation of human brain mapping studies. The challenges inherent in advancing our knowledge about brain function using fMRI are presented first to put the work in context. The course then provides in depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include fMRI experimental design including block design, event related and exploratory data analysis methods, building and applying statistical mod

Subjects

medical lab | medical lab | medical technology | medical technology | magnetic resonance imaging | magnetic resonance imaging | fMRI | fMRI | signal processing | signal processing | human brain mapping | human brain mapping | function | function | image formation physics | image formation physics | metabolism | metabolism | psychology | psychology | image signals | image signals | parenchymal | parenchymal | cerebrovascular neuroanatomy | cerebrovascular neuroanatomy | functional data analysis | functional data analysis | experimental design | experimental design | statistical models | statistical models | human subjects | human subjects | informed consent | informed consent | institutional review board requirements | institutional review board requirements | safety | safety | medical | medical | brain scan | brain scan

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.89 Topics in Computational and Systems Biology (MIT) 7.89 Topics in Computational and Systems Biology (MIT)

Description

This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB PhD program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology. Acknowledgments In addition to the staff listed on this page, the followi This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB PhD program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology. Acknowledgments In addition to the staff listed on this page, the followi

Subjects

computational | computational | systems | systems | biology | biology | seminar | seminar | literature review | literature review | statistics | statistics | developmental | developmental | biochemistry | biochemistry | genetics | genetics | physics | physics | genomics | genomics | signal transduction | signal transduction | regulation | regulation | medicine | medicine | kinetics | kinetics | protein structure | protein structure | devices | devices | synthesis | synthesis | networks | networks | mapping | mapping

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.112 Functions of a Complex Variable (MIT)

Description

This is an advanced undergraduate course dealing with calculus in one complex variable with geometric emphasis. Since the course Analysis I (18.100B) is a prerequisite, topological notions like compactness, connectedness, and related properties of continuous functions are taken for granted.This course offers biweekly problem sets with solutions, two term tests and a final exam, all with solutions.

Subjects

functions of one complex variable | Cauchy's theorem | holomorphic functions | meromorphic functions | residues | contour integrals | conformal mapping | Infinite series and products | the gamma function | the Mittag-Leffler theorem | Harmonic functions | Dirichlet's problem | The Riemann mapping theorem | The Riemann Zeta function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.195 Special Problems in Architectural Design (MIT) 4.195 Special Problems in Architectural Design (MIT)

Description

This class focuses on representation tools used by architects during the design process and attempts to discuss the relationship they develop with the object of design. Representation plays a key role in architectural design, not only as a medium of conveying and narrating a determined meaning or a preconceived idea, but also as a code of creating new meaning, while the medium seeks to establish a relationship with itself. In this sense, mediums of representation, as external parameters to the design process, are not neutral tools of translating an idea into its concrete form. They are neither authentic means of creativity, nor vapid carriers of an idea. Therefore, an important aspect in issues of meaning is how the architect manipulates the play of translating a concept to its concrete ve This class focuses on representation tools used by architects during the design process and attempts to discuss the relationship they develop with the object of design. Representation plays a key role in architectural design, not only as a medium of conveying and narrating a determined meaning or a preconceived idea, but also as a code of creating new meaning, while the medium seeks to establish a relationship with itself. In this sense, mediums of representation, as external parameters to the design process, are not neutral tools of translating an idea into its concrete form. They are neither authentic means of creativity, nor vapid carriers of an idea. Therefore, an important aspect in issues of meaning is how the architect manipulates the play of translating a concept to its concrete ve

Subjects

representation | representation | digital media | digital media | digital design | digital design | images | images | mapping | mapping | material studies | material studies | architecture | architecture | CAD | CAD | design | design | rendering | rendering | modeling | modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Behavioral Genetics (MIT)

Description

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.

Subjects

cognition | language | emotion | personality | behavior | gene mapping | personality traits | Mendelian genetics | genetic mapping techniques | statistical analysis | environmental | genetic programs | evolutionary genetics | social | ethical | 9.19 | 7.66

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.837 Computer Graphics (MIT) 6.837 Computer Graphics (MIT)

Description

This course provides introduction to computer graphics algorithms, software and hardware. Topics include: ray tracing, the graphics pipeline, transformations, texture mapping, shadows, sampling, global illumination, splines, animation and color. This course offers 6 Engineering Design Points in MIT's EECS program. This course provides introduction to computer graphics algorithms, software and hardware. Topics include: ray tracing, the graphics pipeline, transformations, texture mapping, shadows, sampling, global illumination, splines, animation and color. This course offers 6 Engineering Design Points in MIT's EECS program.

Subjects

animation and color | animation and color | modeling | modeling | transformations | transformations | Bezier curves and splines | Bezier curves and splines | representation and interpolation of rotations | representation and interpolation of rotations | computer animation | computer animation | particle systems | particle systems | collision detection | collision detection | ray tracing and casting | ray tracing and casting | rasterization and shading texture mapping | rasterization and shading texture mapping | graphics pipeline | graphics pipeline | global illumination | global illumination | antialiasing | antialiasing | sampling | sampling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.123 Architectural Design, Level I: Perceptions and Processes (MIT) 4.123 Architectural Design, Level I: Perceptions and Processes (MIT)

Description

This studio explores the notion of in-between by engaging several relationships; the relationship between intervention and perception, between representation and notation and between the fixed and the temporal. In the Exactitude in Science, Jorge Luis Borges tells the perverse tale of the one to one scale map, where the desire for precision and power leads to the escalating production of larger and more accurate maps of the territory. For Jean Baudrillard, "The territory no longer precedes the map nor survives it. …it is the map that precedes the territory... and thus, it would be the territory whose shreds are slowly rotting across the map." The map or the territory, left to ruin-shredding across the 'other', beautifully captures the tension between reality and representati This studio explores the notion of in-between by engaging several relationships; the relationship between intervention and perception, between representation and notation and between the fixed and the temporal. In the Exactitude in Science, Jorge Luis Borges tells the perverse tale of the one to one scale map, where the desire for precision and power leads to the escalating production of larger and more accurate maps of the territory. For Jean Baudrillard, "The territory no longer precedes the map nor survives it. …it is the map that precedes the territory... and thus, it would be the territory whose shreds are slowly rotting across the map." The map or the territory, left to ruin-shredding across the 'other', beautifully captures the tension between reality and representati

Subjects

in-between | in-between | relationships | relationships | intervention and perception | intervention and perception | representation and notation | representation and notation | fixed and temporal | fixed and temporal | Borges | Borges | mapping | mapping | territory | territory | Baudrillard | Baudrillard | the 'other' | the 'other' | reality and representation | reality and representation | collective desire and territorial surface | collective desire and territorial surface | filter | filter | create | create | frame | frame | scale | scale | orient | orient | project | project | agency | agency | landscape | landscape | architecture | architecture | urbanism | urbanism | representation versus real | representation versus real | design | design | perception | perception | representation | representation | fixed | fixed | temporal | temporal | map | map | reality | reality | collective desire | collective desire | territorial surface | territorial surface

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.112 Functions of a Complex Variable (MIT)

Description

This is an advanced undergraduate course dealing with calculus in one complex variable with geometric emphasis. Since the course Analysis I (18.100B) is a prerequisite, topological notions like compactness, connectedness, and related properties of continuous functions are taken for granted. This course offers biweekly problem sets with solutions, two term tests and a final exam, all with solutions.

Subjects

functions of one complex variable | Cauchy's theorem | holomorphic functions | meromorphic functions | residues | contour integrals | conformal mapping | Infinite series and products | the gamma function | the Mittag-Leffler theorem | Harmonic functions | Dirichlet's problem | The Riemann mapping theorem | The Riemann Zeta function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.755 Introduction to Lie Groups (MIT) 18.755 Introduction to Lie Groups (MIT)

Description

This course is devoted to the theory of Lie Groups with emphasis on its connections with Differential Geometry. The text for this class is Differential Geometry, Lie Groups and Symmetric Spaces by Sigurdur Helgason (American Mathematical Society, 2001). Much of the course material is based on Chapter I (first half) and Chapter II of the text. The text however develops basic Riemannian Geometry, Complex Manifolds, as well as a detailed theory of Semisimple Lie Groups and Symmetric Spaces. This course is devoted to the theory of Lie Groups with emphasis on its connections with Differential Geometry. The text for this class is Differential Geometry, Lie Groups and Symmetric Spaces by Sigurdur Helgason (American Mathematical Society, 2001). Much of the course material is based on Chapter I (first half) and Chapter II of the text. The text however develops basic Riemannian Geometry, Complex Manifolds, as well as a detailed theory of Semisimple Lie Groups and Symmetric Spaces.

Subjects

Manifolds | Manifolds | Lie groups | Lie groups | exponential mapping | exponential mapping | Lie algebras | Lie algebras | Homogeneous spaces | Homogeneous spaces | transformation groups | transformation groups | Adjoint representation | Adjoint representation | Covering groups | Covering groups | Automorphism groups | Automorphism groups | Invariant differential forms | Invariant differential forms | cohomology of Lie groups | cohomology of Lie groups | homogeneous spaces. | homogeneous spaces. | Lie Groups | Lie Groups | Exponential Mapping | Exponential Mapping | Lie Algebras | Lie Algebras | Homogeneous Spaces | Homogeneous Spaces | Transformation Groups | Transformation Groups | Covering Groups | Covering Groups | Automorphism Groups | Automorphism Groups | Invariant Differential Forms | Invariant Differential Forms | Cohomology of Lie Groups | Cohomology of Lie Groups | Homogeneous Spaces. | Homogeneous Spaces.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.417 Introduction to Computational Molecular Biology (MIT) 18.417 Introduction to Computational Molecular Biology (MIT)

Description

This course introduces the basic computational methods used to understand the cell on a molecular level. It covers subjects such as the sequence alignment algorithms: dynamic programming, hashing, suffix trees, and Gibbs sampling. Furthermore, it focuses on computational approaches to: genetic and physical mapping; genome sequencing, assembly, and annotation; RNA expression and secondary structure; protein structure and folding; and molecular interactions and dynamics. This course introduces the basic computational methods used to understand the cell on a molecular level. It covers subjects such as the sequence alignment algorithms: dynamic programming, hashing, suffix trees, and Gibbs sampling. Furthermore, it focuses on computational approaches to: genetic and physical mapping; genome sequencing, assembly, and annotation; RNA expression and secondary structure; protein structure and folding; and molecular interactions and dynamics.

Subjects

basic computational methods cell on a molecular level | basic computational methods cell on a molecular level | sequence alignment algorithms | sequence alignment algorithms | dynamic programming | dynamic programming | hashing | hashing | suffix trees | suffix trees | Gibbs sampling | Gibbs sampling | genetic and physical mapping | genetic and physical mapping | genome sequencing | genome sequencing | assembly | assembly | and annotation | and annotation | RNA expression and secondary structure | RNA expression and secondary structure | protein structure and folding | protein structure and folding | and molecular interactions and dynamics | and molecular interactions and dynamics | annotation | annotation | molecular interactions and dynamics | molecular interactions and dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.06CI Linear Algebra - Communications Intensive (MIT) 18.06CI Linear Algebra - Communications Intensive (MIT)

Description

This is a communication intensive supplement to Linear Algebra (18.06). The main emphasis is on the methods of creating rigorous and elegant proofs and presenting them clearly in writing. The course starts with the standard linear algebra syllabus and eventually develops the techniques to approach a more advanced topic: abstract root systems in a Euclidean space. This is a communication intensive supplement to Linear Algebra (18.06). The main emphasis is on the methods of creating rigorous and elegant proofs and presenting them clearly in writing. The course starts with the standard linear algebra syllabus and eventually develops the techniques to approach a more advanced topic: abstract root systems in a Euclidean space.

Subjects

Linear Alegebra | Linear Alegebra | Latex | Latex | LaTeX2e | LaTeX2e | mathematical writing | mathematical writing | linear spaces | linear spaces | basis | basis | dimension | dimension | linear mappings | linear mappings | matrices | matrices | subspaces | subspaces | direct sums | direct sums | reflections | reflections | Euclidean space | Euclidean space | abstract root systems | abstract root systems | simple roots | simple roots | positive roots | positive roots | Cartan matrix | Cartan matrix | Dynkin diagrams | Dynkin diagrams | classification | classification | 18.06 | 18.06

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.60 Lean/Six Sigma Processes (MIT) ESD.60 Lean/Six Sigma Processes (MIT)

Description

Students of this course will develop a broad understanding of Lean/Six Sigma principles and practices, build capability to implement Lean/Six Sigma initiatives in manufacturing operations, and learn to operate with awareness of Lean/Six Sigma at the enterprise level. All course materials are organized around a common "single-point lesson" (SPL) format, with some of the SPLs provided by the instructor and guests and with some developed and delivered by student teams. Students of this course will develop a broad understanding of Lean/Six Sigma principles and practices, build capability to implement Lean/Six Sigma initiatives in manufacturing operations, and learn to operate with awareness of Lean/Six Sigma at the enterprise level. All course materials are organized around a common "single-point lesson" (SPL) format, with some of the SPLs provided by the instructor and guests and with some developed and delivered by student teams.

Subjects

lean thinking | lean thinking | variance reduction | variance reduction | design of experiments | design of experiments | team-based work systems | team-based work systems | in-station process control | in-station process control | total productive maintenance | total productive maintenance | synchronous material flow | synchronous material flow | value stream mapping | value stream mapping | knowledge and information flow | knowledge and information flow | pull-based systems in contrasting industry settings | pull-based systems in contrasting industry settings | enterprise alignment | enterprise alignment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ESD.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.660 Introduction to Lean Six Sigma Methods (MIT) 16.660 Introduction to Lean Six Sigma Methods (MIT)

Description

This course introduces the fundamental Lean Six Sigma principles that underlay modern continuous improvement approaches for industry, government and other organizations. Lean emerged from the Japanese automotive industry, particularly Toyota, and is focused on the creation of value through the relentless elimination of waste. Six Sigma is a quality system developed at Motorola which focuses on elimination of variation from all processes. The basic principles have been applied to a wide range of organizations and sectors to improve quality, productivity, customer satisfaction, employee satisfaction, time-to-market and financial performance. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January u This course introduces the fundamental Lean Six Sigma principles that underlay modern continuous improvement approaches for industry, government and other organizations. Lean emerged from the Japanese automotive industry, particularly Toyota, and is focused on the creation of value through the relentless elimination of waste. Six Sigma is a quality system developed at Motorola which focuses on elimination of variation from all processes. The basic principles have been applied to a wide range of organizations and sectors to improve quality, productivity, customer satisfaction, employee satisfaction, time-to-market and financial performance. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January u

Subjects

lean | lean | six sigma | six sigma | lean aerospace initiative | lean aerospace initiative | enterprise leaders | enterprise leaders | value stream mapping | value stream mapping | simulation | simulation | supply chain | supply chain | lean engineering | lean engineering | value stream analysis | value stream analysis | variability | variability | southwest airlines | southwest airlines | boeing | boeing | rockwell collins | rockwell collins | lockheed martin. | lockheed martin.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis (MIT) HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis (MIT)

Description

This team taught, multidisciplinary course covers the fundamentals of magnetic resonance imaging relevant to the conduct and interpretation of human brain mapping studies. The challenges inherent in advancing our knowledge about brain function using fMRI are presented first to put the work in context. The course then provides in depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include fMRI experimental design including block design, event related and exploratory data analysis methods, building and applying statistical mod This team taught, multidisciplinary course covers the fundamentals of magnetic resonance imaging relevant to the conduct and interpretation of human brain mapping studies. The challenges inherent in advancing our knowledge about brain function using fMRI are presented first to put the work in context. The course then provides in depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include fMRI experimental design including block design, event related and exploratory data analysis methods, building and applying statistical mod

Subjects

medical imaging | medical imaging | medical lab | medical lab | medical technology | medical technology | magnetic resonance imaging | magnetic resonance imaging | fMRI | fMRI | signal processing | signal processing | human brain mapping | human brain mapping | function | function | image formation physics | image formation physics | metabolism | metabolism | psychology | psychology | image signals | image signals | parenchymal | parenchymal | cerebrovascular neuroanatomy | cerebrovascular neuroanatomy | functional data analysis | functional data analysis | experimental design | experimental design | statistical models | statistical models | human subjects | human subjects | informed consent | informed consent | institutional review board requirements | institutional review board requirements | safety | safety | medical | medical | brain scan | brain scan

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Man operating a stereo mapping machine

Description

Subjects

florida | miami | maps | mapping | employees | firms | dadecounty | vision:outdoor=0823 | stereomappingmachines | raderassociatestopographic | mapsmachinerycartographyarchitectural

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis (MIT) HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis (MIT)

Description

This team-taught multidisciplinary course provides information relevant to the conduct and interpretation of human brain mapping studies. It begins with in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include: fMRI experimental design including block design, event related and exploratory data analysis methods, and building and applying statistical models for fMRI data; and human subject issues including informed consent, institutional review board requirements and safety in the high field environment. Additional Facul This team-taught multidisciplinary course provides information relevant to the conduct and interpretation of human brain mapping studies. It begins with in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include: fMRI experimental design including block design, event related and exploratory data analysis methods, and building and applying statistical models for fMRI data; and human subject issues including informed consent, institutional review board requirements and safety in the high field environment. Additional Facul

Subjects

medical imaging | medical imaging | medical lab | medical lab | medical technology | medical technology | magnetic resonance imaging | magnetic resonance imaging | MRI | MRI | fMRI | fMRI | signal processing | signal processing | human brain mapping | human brain mapping | function | function | image formation physics | image formation physics | metabolism | metabolism | psychology | psychology | physiology | physiology | image signals | image signals | image processing | image processing | parenchymal | parenchymal | cerebrovascular neuroanatomy | cerebrovascular neuroanatomy | neurology | neurology | functional data analysis | functional data analysis | experimental design | experimental design | statistical models | statistical models | human subjects | human subjects | informed consent | informed consent | institutional review board requirements | institutional review board requirements | safety | safety | medical | medical | brain scan | brain scan | brain imaging | brain imaging | DTI | DTI | vision | vision

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lead and manage change in health and social care Lead and manage change in health and social care

Description

Change is everywhere in health and social care work and can evoke a variety of emotions, from excitement and eager anticipation, to fear and outright hostility. In this free course, How to manage change in health and social care, you will explore the role of managers in the change process and the skills required for managing and leading change in health and social care work. First published on Mon, 15 Feb 2016 as Lead and manage change in health and social care. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 Change is everywhere in health and social care work and can evoke a variety of emotions, from excitement and eager anticipation, to fear and outright hostility. In this free course, How to manage change in health and social care, you will explore the role of managers in the change process and the skills required for managing and leading change in health and social care work. First published on Mon, 15 Feb 2016 as Lead and manage change in health and social care. To find out more visit The Open University's Openlearn website. Creative-Commons 2016

Subjects

Health | Sports & Psychology | Health | Sports & Psychology | Social Care | Social Care | Leadership and Management | Leadership and Management | managing change | managing change | health | health | change process | change process | SWOT analysis | SWOT analysis | stakeholder mapping | stakeholder mapping | K313_1 | K313_1

License

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

Site sourced from

http://www.open.edu/openlearn/rss/try-content

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.963 Environmental Engineering Applications of Geographic Information Systems (MIT) 1.963 Environmental Engineering Applications of Geographic Information Systems (MIT)

Description

This graduate seminar is taught in a lecture and lab exercise format. The subject matter is tailored to introduce Environmental Engineering students to the use and potential of Geographic Information Systems in their discipline. Lectures will cover the general concepts of GIS use and introduce the material in the exercises that demonstrate the practical application of GIS. This graduate seminar is taught in a lecture and lab exercise format. The subject matter is tailored to introduce Environmental Engineering students to the use and potential of Geographic Information Systems in their discipline. Lectures will cover the general concepts of GIS use and introduce the material in the exercises that demonstrate the practical application of GIS.

Subjects

GIS | GIS | Spatial Database Management | Spatial Database Management | Geographic Information Systems | Geographic Information Systems | ArcView | ArcView | census | census | SQL | SQL | databases | databases | cartography | cartography | community planning | community planning | spatial analysis | spatial analysis | wetlands management | wetlands management | data types | data types | map-making | map-making | data mapping | data mapping | hydrology | hydrology | environmental engineering | environmental engineering | deepwater habitats | deepwater habitats | salinization | salinization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata