Searching for measurement : 189 results found | RSS Feed for this search

1 2 3 4 5 6 7 8

8.05 Quantum Physics II (MIT) 8.05 Quantum Physics II (MIT)

Description

This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogen This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogen

Subjects

General formalism of quantum mechanics: states | General formalism of quantum mechanics: states | operators | operators | Dirac notation | Dirac notation | representations | representations | measurement theory | measurement theory | Harmonic oscillator: operator algebra | Harmonic oscillator: operator algebra | states | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | bound and scattering states | qualitative analysis of wavefunctions | qualitative analysis of wavefunctions | Angular momentum: operators | Angular momentum: operators | commutator algebra | commutator algebra | eigenvalues and eigenstates | eigenvalues and eigenstates | spherical harmonics | spherical harmonics | Spin: Stern-Gerlach devices and measurements | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | nuclear magnetic resonance | spin and statistics | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | spin systems | allotropic forms of hydrogen | allotropic forms of hydrogen | Angular momentum | Angular momentum | Harmonic oscillator | Harmonic oscillator | operator algebra | operator algebra | Spin | Spin | Stern-Gerlach devices and measurements | Stern-Gerlach devices and measurements | central potentials and the radial equation | central potentials and the radial equation | Clebsch-Gordan series and coefficients | Clebsch-Gordan series and coefficients | quantum physics | quantum physics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.321 Quantum Theory I (MIT) 8.321 Quantum Theory I (MIT)

Description

8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement. 8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement.

Subjects

eigenstates | eigenstates | uncertainty relation | uncertainty relation | observables | observables | eigenvalues | eigenvalues | probabilities of the results of measurement | probabilities of the results of measurement | transformation theory | transformation theory | equations of motion | equations of motion | constants of motion | constants of motion | Symmetry in quantum mechanics | Symmetry in quantum mechanics | representations of symmetry groups | representations of symmetry groups | Variational and perturbation approximations | Variational and perturbation approximations | Systems of identical particles and applications | Systems of identical particles and applications | Time-dependent perturbation theory | Time-dependent perturbation theory | Scattering theory: phase shifts | Scattering theory: phase shifts | Born approximation | Born approximation | The quantum theory of radiation | The quantum theory of radiation | Second quantization and many-body theory | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | Relativistic quantum mechanics of one electron | probability | probability | measurement | measurement | motion equations | motion equations | motion constants | motion constants | symmetry groups | symmetry groups | quantum mechanics | quantum mechanics | variational approximations | variational approximations | perturbation approximations | perturbation approximations | identical particles | identical particles | time-dependent perturbation theory | time-dependent perturbation theory | scattering theory | scattering theory | phase shifts | phase shifts | quantum theory of radiation | quantum theory of radiation | second quantization | second quantization | many-body theory | many-body theory | relativistic quantum mechanics | relativistic quantum mechanics | one electron | one electron | Hilbert spaces | Hilbert spaces | time evolution | time evolution | Schrodinger picture | Schrodinger picture | Heisenberg picture | Heisenberg picture | interaction picture | interaction picture | classical mechanics | classical mechanics | path integrals | path integrals | EM fields | EM fields | electromagnetic fields | electromagnetic fields | angular momentum | angular momentum | density operators | density operators | quantum measurement | quantum measurement | quantum statistics | quantum statistics | quantum dynamics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.322 Quantum Theory II (MIT) 8.322 Quantum Theory II (MIT)

Description

8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation. 8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.

Subjects

uncertainty relation | uncertainty relation | observables | observables | eigenstates | eigenstates | eigenvalues | eigenvalues | probabilities of the results of measurement | probabilities of the results of measurement | transformation theory | transformation theory | equations of motion | equations of motion | constants of motion | constants of motion | Symmetry in quantum mechanics | Symmetry in quantum mechanics | representations of symmetry groups | representations of symmetry groups | Variational and perturbation approximations | Variational and perturbation approximations | Systems of identical particles and applications | Systems of identical particles and applications | Time-dependent perturbation theory | Time-dependent perturbation theory | Scattering theory: phase shifts | Scattering theory: phase shifts | Born approximation | Born approximation | The quantum theory of radiation | The quantum theory of radiation | Second quantization and many-body theory | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | Relativistic quantum mechanics of one electron | probability | probability | measurement | measurement | motion equations | motion equations | motion constants | motion constants | symmetry groups | symmetry groups | quantum mechanics | quantum mechanics | variational approximations | variational approximations | perturbation approximations | perturbation approximations | identical particles | identical particles | time-dependent perturbation theory | time-dependent perturbation theory | scattering theory | scattering theory | phase shifts | phase shifts | quantum theory of radiation | quantum theory of radiation | second quantization | second quantization | many-body theory | many-body theory | relativistic quantum mechanics | relativistic quantum mechanics | one electron | one electron | quantization | quantization | EM radiation field | EM radiation field | electromagnetic radiation field | electromagnetic radiation field | adiabatic theorem | adiabatic theorem | Berry?s phase | Berry?s phase | many-particle systems | many-particle systems | Dirac equation | Dirac equation | Hilbert spaces | Hilbert spaces | time evolution | time evolution | Schrodinger picture | Schrodinger picture | Heisenberg picture | Heisenberg picture | interaction picture | interaction picture | classical mechanics | classical mechanics | path integrals | path integrals | EM fields | EM fields | electromagnetic fields | electromagnetic fields | angular momentum | angular momentum | density operators | density operators | quantum measurement | quantum measurement | quantum statistics | quantum statistics | quantum dynamics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.05 Quantum Physics II (MIT) 8.05 Quantum Physics II (MIT)

Description

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum. Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.

Subjects

General formalism of quantum mechanics: states | General formalism of quantum mechanics: states | operators | operators | Dirac notation | Dirac notation | representations | representations | measurement theory | measurement theory | Harmonic oscillator: operator algebra | Harmonic oscillator: operator algebra | states | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | bound and scattering states | qualitative analysis of wavefunctions | qualitative analysis of wavefunctions | Angular momentum: operators | Angular momentum: operators | commutator algebra | commutator algebra | eigenvalues and eigenstates | eigenvalues and eigenstates | spherical harmonics | spherical harmonics | Spin: Stern-Gerlach devices and measurements | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | nuclear magnetic resonance | spin and statistics | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | spin systems | allotropic forms of hydrogen | allotropic forms of hydrogen | Angular momentum | Angular momentum | Harmonic oscillator | Harmonic oscillator | operator algebra | operator algebra | Spin | Spin | Stern-Gerlach devices and measurements | Stern-Gerlach devices and measurements | central potentials and the radial equation | central potentials and the radial equation | Clebsch-Gordan series and coefficients | Clebsch-Gordan series and coefficients | quantum physics | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogen | and allotropic forms of hydrogen

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Analytical Science

Description

Wales undergraduate level and as a CPD training resource

Subjects

ukoer | sfsoer | oer | open educational resources | metadata | analytical science | cpd training resource | analytical chemistry | measurement science | analytical process model | skills for analytical science | skills for analytical chemistry | analytical sample preparation | separation and concentration of analytes | units of measurement | volumetric techniques | gravimetric techniques | calibration methods | standard-addition | method of internal-standards | statistical analysis of data | measurement uncertainty | chromatographic methods | thin layer chromatography | gc | gas chromatography | hplc | high-performance liquid chromatography | capillary electrophoresis | potentiometry | ion-selective electrodes | amperometry | coulometry | plated film thickness | electromagnetic spectrum | electronic transitions | vibrational energy | comparison of spectroscopic techniques | fluorescence spectroscopy | mid infra-red spectroscopy | near infra-red spectroscopy | aas | atomic absorption spectroscopy | atomic emission spectroscopy | inductively coupled plasme emission spectroscopy | icpms | icpes | atomic fluorescence spectroscopy | comparison of elemental analysis techniques | principles of mass spectroscopy | electron impact mass spectroscopy | chemical ionisation mass spectroscopy | quadrupole mass spectroscopy | time-of-flight mass analysers | ion-trap mass analysers | off-line sampling systems | at-line sampling systems | on-line sampling systems | in-line sampling systems | performance characteristics of analytical techniques | flow injection analysis | fia | process gc | process ir | process ms | process uv/visible | quality management | quality assurance | qa | vam principles | quality control | qc | analytical method validation | analytical method performance characteristics | sampling of solids | liquids and gases | measurement of ph | karl fischer titration | uv/visible spectroscopy | beer's law | beer-lambert law | deviations from beer's law | mid ir spectroscopy | near ir spectroscopy | raman spectroscopy | fourier transform spectroscopies | x-ray methods | x-ray fluorescence spectroscopy | gc-ms | lc-ms | Physical sciences | F000

License

Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-nd/2.0/uk/ http://creativecommons.org/licenses/by-nc-nd/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.163 Strobe Project Laboratory (MIT) 6.163 Strobe Project Laboratory (MIT)

Description

Includes audio/video content: AV special element video. This is a laboratory experience course with a focus on photography, electronic imaging, and light measurement, much of it at short duration. In addition to teaching these techniques, the course provides students with experience working in a laboratory and teaches good work habits and techniques for approaching laboratory work. A major purpose of 6.163 is to provide students with many opportunities to sharpen their communication skills: oral, written, and visual. Includes audio/video content: AV special element video. This is a laboratory experience course with a focus on photography, electronic imaging, and light measurement, much of it at short duration. In addition to teaching these techniques, the course provides students with experience working in a laboratory and teaches good work habits and techniques for approaching laboratory work. A major purpose of 6.163 is to provide students with many opportunities to sharpen their communication skills: oral, written, and visual.

Subjects

strobe | strobe | edgerton | edgerton | electronic imaging | electronic imaging | light measurement | light measurement | strobe laboratory | strobe laboratory | electronic flash sources | electronic flash sources | measurement | measurement | fundamentals of photography | fundamentals of photography | experiments on application of electronic flash to photography | stroboscopy | motion analysis | and high-speed videography | experiments on application of electronic flash to photography | stroboscopy | motion analysis | and high-speed videography | independent projects | independent projects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.601 Introduction to Environmental Policy and Planning (MIT) 11.601 Introduction to Environmental Policy and Planning (MIT)

Description

This course is the first subject in the Environmental Policy and Planning sequence. It reviews philosophical debates including growth vs. deep ecology, "command-and-control" vs. market-oriented approaches to regulation, and the importance of expertise vs. indigenous knowledge. Its emphasis is placed on environmental planning techniques and strategies. Related topics include the management of sustainability, the politics of ecosystem management, environmental governance and the changing role of civil society, ecological economics, integrated assessment (combining environmental impact assessment (EIA) and risk assessment), joint fact finding in science-intensive policy disputes, environmental justice in poor communities of color, and environmental dispute resolution. This course is the first subject in the Environmental Policy and Planning sequence. It reviews philosophical debates including growth vs. deep ecology, "command-and-control" vs. market-oriented approaches to regulation, and the importance of expertise vs. indigenous knowledge. Its emphasis is placed on environmental planning techniques and strategies. Related topics include the management of sustainability, the politics of ecosystem management, environmental governance and the changing role of civil society, ecological economics, integrated assessment (combining environmental impact assessment (EIA) and risk assessment), joint fact finding in science-intensive policy disputes, environmental justice in poor communities of color, and environmental dispute resolution.

Subjects

Experimental investigations of speech processes. Topics: measurement of articulatory movements | Experimental investigations of speech processes. Topics: measurement of articulatory movements | measurements of pressures and airflows in speech production | measurements of pressures and airflows in speech production | computer-aided waveform analysis and spectral analysis of speech | computer-aided waveform analysis and spectral analysis of speech | synthesis of speech | synthesis of speech | perception and discrimination of speechlike sounds | perception and discrimination of speechlike sounds | speech prosody | speech prosody | models for speech recognition | models for speech recognition | speech disorders | speech disorders | other topics | other topics | environment | environment | environmental planning | environmental planning | environmental policy | environmental policy | ethics | ethics | land use planning | land use planning | environmental management | environmental management | growth | growth | scarcity | scarcity | command and control | command and control | market forces | market forces | utilitarianism | utilitarianism | deep ecology | deep ecology | expert knowledge | expert knowledge | indigeneous knowledge | indigeneous knowledge | land conservation | land conservation | sustainable design | sustainable design | growth management | growth management | hazard mitigation | hazard mitigation | ecosystem management | ecosystem management | geospatial data | geospatial data | stormwater management | stormwater management | runoff pollution | runoff pollution | landscape ecology | landscape ecology | biodiversity | biodiversity | integrated assessment | integrated assessment | professional practice | professional practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.542J Laboratory on the Physiology, Acoustics, and Perception of Speech (MIT) 6.542J Laboratory on the Physiology, Acoustics, and Perception of Speech (MIT)

Description

The course focuses on experimental investigations of speech processes. Topics include: measurement of articulatory movements, measurements of pressures and airflows in speech production, computer-aided waveform analysis and spectral analysis of speech, synthesis of speech, perception and discrimination of speechlike sounds, speech prosody, models for speech recognition, speech disorders, and other topics. Two 1-hour lectures per week Two labs per week Brief lab reports Term project, with short term paper No exams The course focuses on experimental investigations of speech processes. Topics include: measurement of articulatory movements, measurements of pressures and airflows in speech production, computer-aided waveform analysis and spectral analysis of speech, synthesis of speech, perception and discrimination of speechlike sounds, speech prosody, models for speech recognition, speech disorders, and other topics. Two 1-hour lectures per week Two labs per week Brief lab reports Term project, with short term paper No exams

Subjects

Speech | Speech | speech disorders | speech disorders | speech recognition | speech recognition | speech prosody | speech prosody | waveform analysis | waveform analysis | spectral analysis | spectral analysis | 6.542 | 6.542 | 24.966 | 24.966 | HST.712 | HST.712 | Experimental investigations of speech processes | Experimental investigations of speech processes | Topics: measurement of articulatory movements | Topics: measurement of articulatory movements | measurements of pressures and airflows in speech production | measurements of pressures and airflows in speech production | computer-aided waveform analysis and spectral analysis of speech | computer-aided waveform analysis and spectral analysis of speech | synthesis of speech | synthesis of speech | perception and discrimination of speechlike sounds | perception and discrimination of speechlike sounds | models for speech recognition | models for speech recognition | and other topics | and other topics | other topics | other topics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.05 Quantum Physics II (MIT)

Description

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.

Subjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogen

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-8.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.321 Quantum Theory I (MIT)

Description

8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement.

Subjects

eigenstates | uncertainty relation | observables | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.322 Quantum Theory II (MIT)

Description

8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.

Subjects

uncertainty relation | observables | eigenstates | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | quantization | EM radiation field | electromagnetic radiation field | adiabatic theorem | Berry?s phase | many-particle systems | Dirac equation | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.05 Quantum Physics II (MIT)

Description

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.

Subjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogen

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.05 Quantum Physics II (MIT)

Description

This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogen

Subjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.321 Quantum Theory I (MIT)

Description

8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement.

Subjects

eigenstates | uncertainty relation | observables | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.322 Quantum Theory II (MIT)

Description

8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.

Subjects

uncertainty relation | observables | eigenstates | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | quantization | EM radiation field | electromagnetic radiation field | adiabatic theorem | Berry?s phase | many-particle systems | Dirac equation | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.05 Quantum Physics II (MIT)

Description

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.

Subjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogen

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.808 Introduction to Observational Physical Oceanography (MIT) 12.808 Introduction to Observational Physical Oceanography (MIT)

Description

Observational physical oceanography includes topics such as the  physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions. Observational physical oceanography includes topics such as the  physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions.

Subjects

Physical description of the sea | Physical description of the sea | physical properties of seawater | physical properties of seawater | methods | methods | measurements | measurements | wind-driven ocean circulation | wind-driven ocean circulation | abyssal ocean circulation | abyssal ocean circulation | boundary processes | boundary processes | wave motions | wave motions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.622 Experimental Projects II (MIT) 16.622 Experimental Projects II (MIT)

Description

The Experimental Project Lab in the Department of Aeronautics and Astronautics is a two-semester course sequence: 16.621 Experimental Projects I and 16.622 Experimental Projects II (this course). Students in 16.622 gain practical insight and improved understanding of engineering experimentation through design and execution of "project" experiments. Building upon work in course 16.621, students construct and test equipment, make systematic experimental measurements of phenomena, analyze data, and compare theoretical predictions with results. Deliverables comprise a written final project report and formal oral presentations. Instructions on oral presentations and multi-section reporting are given. Experimental Projects I and II provide a valuable link between theory (16.621) and pr The Experimental Project Lab in the Department of Aeronautics and Astronautics is a two-semester course sequence: 16.621 Experimental Projects I and 16.622 Experimental Projects II (this course). Students in 16.622 gain practical insight and improved understanding of engineering experimentation through design and execution of "project" experiments. Building upon work in course 16.621, students construct and test equipment, make systematic experimental measurements of phenomena, analyze data, and compare theoretical predictions with results. Deliverables comprise a written final project report and formal oral presentations. Instructions on oral presentations and multi-section reporting are given. Experimental Projects I and II provide a valuable link between theory (16.621) and pr

Subjects

experiment | experiment | experimental project | experimental project | laboratory | laboratory | measurement | measurement | report writing | report writing | oral presentation | oral presentation | design | design | proposal | proposal | hypothesis | hypothesis | communication | communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.621 Experimental Projects I (MIT) 16.621 Experimental Projects I (MIT)

Description

The Experimental Project Lab in the Department of Aeronautics and Astronautics is a two-semester course sequence: 16.621 Experimental Projects I (this course) and 16.622 Experimental Projects II. This site offers material on 16.621. In the course, two-person teams initiate a project of their own conception and design in 16.621 and then complete it in 16.622. For many students, this is a first encounter with research standards and techniques. It is a complicated course that requires a lot of interaction and support and also access to facilities and materials, but it is rewarding for students to explore an hypothesis under the guidance of a faculty advisor. This OCW site presents the building block materials of the course, which can provide only a profile of the course because the most The Experimental Project Lab in the Department of Aeronautics and Astronautics is a two-semester course sequence: 16.621 Experimental Projects I (this course) and 16.622 Experimental Projects II. This site offers material on 16.621. In the course, two-person teams initiate a project of their own conception and design in 16.621 and then complete it in 16.622. For many students, this is a first encounter with research standards and techniques. It is a complicated course that requires a lot of interaction and support and also access to facilities and materials, but it is rewarding for students to explore an hypothesis under the guidance of a faculty advisor. This OCW site presents the building block materials of the course, which can provide only a profile of the course because the most

Subjects

experiment | experiment | experimental project | experimental project | laboratory | laboratory | measurement | measurement | report writing | report writing | oral presentation | oral presentation | design | design | proposal | proposal | hypothesis | hypothesis | communication | communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Launch of Multidimensional Poverty Peer Network: Dr Jose M. Roche and Dr Suman Seth

Description

Ministers and distinguished high-level representatives from around twenty countries formally launched a new Multidimensional Poverty Peer Network in Oxford on 6 June. Dr Jose M. Roche and Dr Suman Seth - OPHI. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

Jose M. Roche | policy network | Suman Seth | poverty measurement | Multidimensional Poverty | poverty | policy | Jose M. Roche | policy network | Suman Seth | poverty measurement | Multidimensional Poverty | poverty | policy

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129111/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Launch of Multidimensional Poverty Peer Network: Professor Abhijit Sen

Description

Ministers and distinguished high-level representatives from around twenty countries formally launched a new Multidimensional Poverty Peer Network in Oxford on 6 June. Professor Abhijit Sen, India. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

india | policy network | Abhijit Sen | poverty measurement | Multidimensional Poverty | poverty | policy | india | policy network | Abhijit Sen | poverty measurement | Multidimensional Poverty | poverty | policy

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129111/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Stephan Klasen describes key findings of Dynamic Comparison workshop

Description

Stephan Klasen describe key findings of Dynamic Comparison workshop. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

poverty measurement | Multidimensional Poverty | poverty | poverty measurement | Multidimensional Poverty | poverty

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129111/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Juan Pablo Ocampo Sheen describe key findings of Dynamic Comparison workshop

Description

Juan Pablo Ocampo Sheen describe key findings of Dynamic Comparison workshop. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

poverty measurement | Multidimensional Poverty | poverty | poverty measurement | Multidimensional Poverty | poverty

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129111/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata