Searching for measurements : 40 results found | RSS Feed for this search

8.05 Quantum Physics II (MIT) 8.05 Quantum Physics II (MIT)

Description

This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogen This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogenSubjects

General formalism of quantum mechanics: states | General formalism of quantum mechanics: states | operators | operators | Dirac notation | Dirac notation | representations | representations | measurement theory | measurement theory | Harmonic oscillator: operator algebra | Harmonic oscillator: operator algebra | states | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | bound and scattering states | qualitative analysis of wavefunctions | qualitative analysis of wavefunctions | Angular momentum: operators | Angular momentum: operators | commutator algebra | commutator algebra | eigenvalues and eigenstates | eigenvalues and eigenstates | spherical harmonics | spherical harmonics | Spin: Stern-Gerlach devices and measurements | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | nuclear magnetic resonance | spin and statistics | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | spin systems | allotropic forms of hydrogen | allotropic forms of hydrogen | Angular momentum | Angular momentum | Harmonic oscillator | Harmonic oscillator | operator algebra | operator algebra | Spin | Spin | Stern-Gerlach devices and measurements | Stern-Gerlach devices and measurements | central potentials and the radial equation | central potentials and the radial equation | Clebsch-Gordan series and coefficients | Clebsch-Gordan series and coefficients | quantum physics | quantum physicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.05 Quantum Physics II (MIT) 8.05 Quantum Physics II (MIT)

Description

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum. Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.Subjects

General formalism of quantum mechanics: states | General formalism of quantum mechanics: states | operators | operators | Dirac notation | Dirac notation | representations | representations | measurement theory | measurement theory | Harmonic oscillator: operator algebra | Harmonic oscillator: operator algebra | states | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | bound and scattering states | qualitative analysis of wavefunctions | qualitative analysis of wavefunctions | Angular momentum: operators | Angular momentum: operators | commutator algebra | commutator algebra | eigenvalues and eigenstates | eigenvalues and eigenstates | spherical harmonics | spherical harmonics | Spin: Stern-Gerlach devices and measurements | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | nuclear magnetic resonance | spin and statistics | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | spin systems | allotropic forms of hydrogen | allotropic forms of hydrogen | Angular momentum | Angular momentum | Harmonic oscillator | Harmonic oscillator | operator algebra | operator algebra | Spin | Spin | Stern-Gerlach devices and measurements | Stern-Gerlach devices and measurements | central potentials and the radial equation | central potentials and the radial equation | Clebsch-Gordan series and coefficients | Clebsch-Gordan series and coefficients | quantum physics | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogen | and allotropic forms of hydrogenLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Firstly, the course begins with an introduction to Instrumentation Systems to solve the problem of measurements of physical systems, how to analyze experimental data and metrological aspects. Secondly, analog signal conditioning is presented along the main electronic circuits used and the influence of noise and interference in order to design such circuits. Thirdly, several sensors and electronic and optoelectronic transducers are described attending their electronic and optical characteristics along with their applications in several fields as position, displacement, temperature, etc. Finally, and due to their interest some electronic and optoelectronic sensors for biomedical instrumentation are also described. After the course the student should be able to solve basic instrumentation pro Firstly, the course begins with an introduction to Instrumentation Systems to solve the problem of measurements of physical systems, how to analyze experimental data and metrological aspects. Secondly, analog signal conditioning is presented along the main electronic circuits used and the influence of noise and interference in order to design such circuits. Thirdly, several sensors and electronic and optoelectronic transducers are described attending their electronic and optical characteristics along with their applications in several fields as position, displacement, temperature, etc. Finally, and due to their interest some electronic and optoelectronic sensors for biomedical instrumentation are also described. After the course the student should be able to solve basic instrumentation proSubjects

instrumentation | instrumentation | ía de Telecomunicación | ía de Telecomunicación | ía Electrónica | ía Electrónica | measurements | measurements | laboratory | laboratory | sensors | sensors | 2009 | 2009 | electronic instrumentation | electronic instrumentationLicense

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_allAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)

Description

This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following. Quantum optics: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; radiation field quantization and quantum field propagation; P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle; beam splitters; phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection, heterodyne detection, and homodyne detection.&a This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following. Quantum optics: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; radiation field quantization and quantum field propagation; P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle; beam splitters; phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection, heterodyne detection, and homodyne detection.&aSubjects

Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | coherent states | and squeezed states | number states | coherent states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields | P-representation and classical fields | Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers | phase-insensitive and phase-sensitive amplifiers | Quantum photodetection: direct detection | heterodyne detection | and homodyne detection | Quantum photodetection: direct detection | heterodyne detection | and homodyne detection | Second-order nonlinear optics: phasematched interactions | Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | Quantum systems theory: optimum binary detection | Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | quantum teleportation | quantum teleportationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.215 Modern Navigation (MIT) 12.215 Modern Navigation (MIT)

Description

The development of the Global Positioning System (GPS) started in the 1960s, and the system became operational in 1992. The system has seen many diverse applications develop in the last few years with the accuracy of positioning ranging from 100 meters (the civilian restricted accuracy requirement) to 1 millimeter (without the need for a security clearance!) In this course we will apply many of basic principles of science and mathematics learnt at MIT to explore the applications and principles of GPS. We also use GPS and other equipment in the class (and outside on Campus) to demonstrate the uses of this system.Technical RequirementsAny number of development tools can be used to compile and run the .f files found on this course site. Please refer to the The development of the Global Positioning System (GPS) started in the 1960s, and the system became operational in 1992. The system has seen many diverse applications develop in the last few years with the accuracy of positioning ranging from 100 meters (the civilian restricted accuracy requirement) to 1 millimeter (without the need for a security clearance!) In this course we will apply many of basic principles of science and mathematics learnt at MIT to explore the applications and principles of GPS. We also use GPS and other equipment in the class (and outside on Campus) to demonstrate the uses of this system.Technical RequirementsAny number of development tools can be used to compile and run the .f files found on this course site. Please refer to theSubjects

Global Positioning | Global Positioning | Global Positioning System | Global Positioning System | GPScivilian restricted accuracy requirment | GPScivilian restricted accuracy requirment | basic principles | basic principles | science | science | mathematics | mathematics | GPS | GPS | navigation | navigation | accuracy | accuracy | civilian | civilian | application | application | coordinate systems | coordinate systems | lattitude | lattitude | longitude | longitude | deformable | deformable | Earth | Earth | estimation | estimation | aircraft | aircraft | stochastic | stochastic | mathematical | mathematical | models | models | statistics | statistics | dynamic systems | dynamic systems | pseudorange | pseudorange | phase measurements | phase measurements | celestial | celestial | sattelite | sattelite | astronomical observations | astronomical observations | radio | radio | ship | ship | automobile | automobileLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls filesSubjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawingsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)

Description

This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and pola This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and polaSubjects

Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | number states | coherent states | coherent states | and squeezed states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | heterodyne detection | heterodyne detection | and homodyne detection. Second-order nonlinear optics: phasematched interactions | and homodyne detection. Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | generation of squeezed states | photon-twin beams | photon-twin beams | non-classical fourth-order interference | non-classical fourth-order interference | and polarization entanglement. Quantum systems theory: optimum binary detection | and polarization entanglement. Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | and quantum teleportation. | and quantum teleportation.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The course focuses on experimental investigations of speech processes. Topics include: measurement of articulatory movements, measurements of pressures and airflows in speech production, computer-aided waveform analysis and spectral analysis of speech, synthesis of speech, perception and discrimination of speechlike sounds, speech prosody, models for speech recognition, speech disorders, and other topics. Two 1-hour lectures per week Two labs per week Brief lab reports Term project, with short term paper No exams The course focuses on experimental investigations of speech processes. Topics include: measurement of articulatory movements, measurements of pressures and airflows in speech production, computer-aided waveform analysis and spectral analysis of speech, synthesis of speech, perception and discrimination of speechlike sounds, speech prosody, models for speech recognition, speech disorders, and other topics. Two 1-hour lectures per week Two labs per week Brief lab reports Term project, with short term paper No examsSubjects

Speech | Speech | speech disorders | speech disorders | speech recognition | speech recognition | speech prosody | speech prosody | waveform analysis | waveform analysis | spectral analysis | spectral analysis | 6.542 | 6.542 | 24.966 | 24.966 | HST.712 | HST.712 | Experimental investigations of speech processes | Experimental investigations of speech processes | Topics: measurement of articulatory movements | Topics: measurement of articulatory movements | measurements of pressures and airflows in speech production | measurements of pressures and airflows in speech production | computer-aided waveform analysis and spectral analysis of speech | computer-aided waveform analysis and spectral analysis of speech | synthesis of speech | synthesis of speech | perception and discrimination of speechlike sounds | perception and discrimination of speechlike sounds | models for speech recognition | models for speech recognition | and other topics | and other topics | other topics | other topicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.977 Ultrafast Optics (MIT) 6.977 Ultrafast Optics (MIT)

Description

This course is offered to graduate students and addresses issues regarding ultrafast optics. Topics covered include: Generation, propagation and applications of ultrashort pulses (nano-, pico-, femto-, attosecond pulses); Linear and nonlinear pulse shaping processes: Optical solitons, Pulse compression; Laser principles: Single- and multi-mode laser dynamics, Q-switching, Active and passive mode-locking; Pulse characterization: Autocorrelation, FROG, SPIDER; Noise in mode-locked lasers and its limitations in measurements; Laser amplifiers, optical parametric amplifiers, and oscillators; Applications in research and industry: Pump-probe techniques, Optical imaging, Frequency metrology, Laser ablation, High harmonic generation. This course is offered to graduate students and addresses issues regarding ultrafast optics. Topics covered include: Generation, propagation and applications of ultrashort pulses (nano-, pico-, femto-, attosecond pulses); Linear and nonlinear pulse shaping processes: Optical solitons, Pulse compression; Laser principles: Single- and multi-mode laser dynamics, Q-switching, Active and passive mode-locking; Pulse characterization: Autocorrelation, FROG, SPIDER; Noise in mode-locked lasers and its limitations in measurements; Laser amplifiers, optical parametric amplifiers, and oscillators; Applications in research and industry: Pump-probe techniques, Optical imaging, Frequency metrology, Laser ablation, High harmonic generation.Subjects

ultrafast optics | ultrafast optics | generation | generation | propagation | propagation | ultrashort pulses | ultrashort pulses | nanopulses | nanopulses | picopulses | picopulses | femtopulses | femtopulses | attosecond pulses | attosecond pulses | linear | linear | non-linear | non-linear | effects | effects | high precision | high precision | measurements | measurements | nonlinear optics | nonlinear optics | optical signal processing | optical signal processing | optical communications | optical communications | x-ray generation | x-ray generationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.Subjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogenLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-8.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is the first subject in the Environmental Policy and Planning sequence. It reviews philosophical debates including growth vs. deep ecology, "command-and-control" vs. market-oriented approaches to regulation, and the importance of expertise vs. indigenous knowledge. Its emphasis is placed on environmental planning techniques and strategies. Related topics include the management of sustainability, the politics of ecosystem management, environmental governance and the changing role of civil society, ecological economics, integrated assessment (combining environmental impact assessment (EIA) and risk assessment), joint fact finding in science-intensive policy disputes, environmental justice in poor communities of color, and environmental dispute resolution. This course is the first subject in the Environmental Policy and Planning sequence. It reviews philosophical debates including growth vs. deep ecology, "command-and-control" vs. market-oriented approaches to regulation, and the importance of expertise vs. indigenous knowledge. Its emphasis is placed on environmental planning techniques and strategies. Related topics include the management of sustainability, the politics of ecosystem management, environmental governance and the changing role of civil society, ecological economics, integrated assessment (combining environmental impact assessment (EIA) and risk assessment), joint fact finding in science-intensive policy disputes, environmental justice in poor communities of color, and environmental dispute resolution.Subjects

Experimental investigations of speech processes. Topics: measurement of articulatory movements | Experimental investigations of speech processes. Topics: measurement of articulatory movements | measurements of pressures and airflows in speech production | measurements of pressures and airflows in speech production | computer-aided waveform analysis and spectral analysis of speech | computer-aided waveform analysis and spectral analysis of speech | synthesis of speech | synthesis of speech | perception and discrimination of speechlike sounds | perception and discrimination of speechlike sounds | speech prosody | speech prosody | models for speech recognition | models for speech recognition | speech disorders | speech disorders | other topics | other topics | environment | environment | environmental planning | environmental planning | environmental policy | environmental policy | ethics | ethics | land use planning | land use planning | environmental management | environmental management | growth | growth | scarcity | scarcity | command and control | command and control | market forces | market forces | utilitarianism | utilitarianism | deep ecology | deep ecology | expert knowledge | expert knowledge | indigeneous knowledge | indigeneous knowledge | land conservation | land conservation | sustainable design | sustainable design | growth management | growth management | hazard mitigation | hazard mitigation | ecosystem management | ecosystem management | geospatial data | geospatial data | stormwater management | stormwater management | runoff pollution | runoff pollution | landscape ecology | landscape ecology | biodiversity | biodiversity | integrated assessment | integrated assessment | professional practice | professional practiceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Observational physical oceanography includes topics such as the physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions. Observational physical oceanography includes topics such as the physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions.Subjects

Physical description of the sea | Physical description of the sea | physical properties of seawater | physical properties of seawater | methods | methods | measurements | measurements | wind-driven ocean circulation | wind-driven ocean circulation | abyssal ocean circulation | abyssal ocean circulation | boundary processes | boundary processes | wave motions | wave motionsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.Subjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogenLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataAntenna Design and Measurement Techniques Antenna Design and Measurement Techniques

Description

The aim of this short course is to familiarize students with antennas, in a quite practical way. Students will acquire knowledge about all the main aspects of designing and measuring antennas. The course is divided into two different parts: Antenna Design and Antenna Measurement (course main topics). Students are also going to be taught about Smart antennas and signal processing with antennas (special topic, with invited professors). In the Antenna Design Part, students are going to deal with concepts and tools quite useful for antenna design and prototyping. In the Antenna Measurement Part, students are going to get used to the different measuring techniques. The course will include a visit to an Anechoic Chamber. At the end of the course, students will be able to understand the main a The aim of this short course is to familiarize students with antennas, in a quite practical way. Students will acquire knowledge about all the main aspects of designing and measuring antennas. The course is divided into two different parts: Antenna Design and Antenna Measurement (course main topics). Students are also going to be taught about Smart antennas and signal processing with antennas (special topic, with invited professors). In the Antenna Design Part, students are going to deal with concepts and tools quite useful for antenna design and prototyping. In the Antenna Measurement Part, students are going to get used to the different measuring techniques. The course will include a visit to an Anechoic Chamber. At the end of the course, students will be able to understand the main aSubjects

Anechoic chamber | Anechoic chamber | Simulation software | Simulation software | Coupling | Coupling | Antenna | Antenna | Radiation pattern | Radiation pattern | S-parameters | S-parameters | Reflection | Reflection | Far-field | Far-field | Antenna measurements | Antenna measurements | Array | Array | Prototype | Prototype | TeorÃa de la SeÃ±al y Comunicaciones | TeorÃa de la SeÃ±al y Comunicaciones | Near-field | Near-fieldLicense

Copyright 2009, by the Contributing Authors http://creativecommons.org/licenses/by-nc-sa/3.0/Site sourced from

http://ocw.upm.es/rss_allAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataMaths for Science Maths for Science

Description

Observation, measurement and the recording of data are central activities in science. Speculation and the development of new theories are crucial as well, but ultimately the predictions resulting from those theories have to be tested against what actually happens and this can only be done by making further measurements. Whether measurements are made using simple instruments such as rulers and thermometers, or involve sophisticated devices such as electron microscopes or lasers, there are decisions to be made about how the results are to be represented, what courses of measurements will be used and the precision to which the measurements will be made. In this free course, Maths for Science, we will consider these points in turn. First published on Tue, 22 Mar 2016 as Maths for Science. To f Observation, measurement and the recording of data are central activities in science. Speculation and the development of new theories are crucial as well, but ultimately the predictions resulting from those theories have to be tested against what actually happens and this can only be done by making further measurements. Whether measurements are made using simple instruments such as rulers and thermometers, or involve sophisticated devices such as electron microscopes or lasers, there are decisions to be made about how the results are to be represented, what courses of measurements will be used and the precision to which the measurements will be made. In this free course, Maths for Science, we will consider these points in turn. First published on Tue, 22 Mar 2016 as Maths for Science. To fSubjects

Mathematics Education | Mathematics Education | data | data | measurements | measurements | probabilities | probabilities | S151_1 | S151_1License

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open UniversitySite sourced from

http://www.open.edu/openlearn/rss/try-contentAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.Subjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogenLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogenSubjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)

Description

This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and pola This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and polaSubjects

Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | number states | coherent states | coherent states | and squeezed states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | heterodyne detection | heterodyne detection | and homodyne detection. Second-order nonlinear optics: phasematched interactions | and homodyne detection. Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | generation of squeezed states | photon-twin beams | photon-twin beams | non-classical fourth-order interference | non-classical fourth-order interference | and polarization entanglement. Quantum systems theory: optimum binary detection | and polarization entanglement. Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | and quantum teleportation. | and quantum teleportation.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.542J Laboratory on the Physiology, Acoustics, and Perception of Speech (MIT)

Description

The course focuses on experimental investigations of speech processes. Topics include: measurement of articulatory movements, measurements of pressures and airflows in speech production, computer-aided waveform analysis and spectral analysis of speech, synthesis of speech, perception and discrimination of speechlike sounds, speech prosody, models for speech recognition, speech disorders, and other topics. Two 1-hour lectures per week Two labs per week Brief lab reports Term project, with short term paper No examsSubjects

Speech | speech disorders | speech recognition | speech prosody | waveform analysis | spectral analysis | 6.542 | 24.966 | HST.712 | Experimental investigations of speech processes | Topics: measurement of articulatory movements | measurements of pressures and airflows in speech production | computer-aided waveform analysis and spectral analysis of speech | synthesis of speech | perception and discrimination of speechlike sounds | models for speech recognition | and other topics | other topicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawingsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.808 Introduction to Observational Physical Oceanography (MIT)

Description

Observational physical oceanography includes topics such as the physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions.Subjects

Physical description of the sea | physical properties of seawater | methods | measurements | wind-driven ocean circulation | abyssal ocean circulation | boundary processes | wave motionsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.542J Laboratory on the Physiology, Acoustics, and Perception of Speech (MIT)

Description

The course focuses on experimental investigations of speech processes. Topics include: measurement of articulatory movements, measurements of pressures and airflows in speech production, computer-aided waveform analysis and spectral analysis of speech, synthesis of speech, perception and discrimination of speechlike sounds, speech prosody, models for speech recognition, speech disorders, and other topics. Two 1-hour lectures per week Two labs per week Brief lab reports Term project, with short term paper No examsSubjects

Speech | speech disorders | speech recognition | speech prosody | waveform analysis | spectral analysis | 6.542 | 24.966 | HST.712 | Experimental investigations of speech processes | Topics: measurement of articulatory movements | measurements of pressures and airflows in speech production | computer-aided waveform analysis and spectral analysis of speech | synthesis of speech | perception and discrimination of speechlike sounds | models for speech recognition | and other topics | other topicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This case study presents an investigation into the corrosion kinetics of copper and iron using electrochemical measurements to determine corrosion potentials and polarisation curves. This is an introductory level case study.Subjects

corrosion | engineering | metals | corrosion potential | reference electrodes | reference scale | field measurements | calomel reference electrode | iron | zinc | nacl | standard hydrogen electrode | corematerials | ukoer | Engineering | H000License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataThe plates must be made perfectly flat

Description

This photograph, taken in the Hawthorn Leslie yard, Hebburn is captioned 'The plates must be made perfectly flat'. Reference: 2931-43-15 This image is taken from an album produced by the world famous shipbuilding and engineering firm of Hawthorn Leslie. The album gives us a fascinating glimpse of life at the company's shipyard at Hebburn from the late 1930s to the 1960s. There are remarkable images of the men at work in the yard and a poignant series showing the terrible damage caused during the Second World War to HMS Kelly, one of Hawthorn Leslie's best loved ships. This particular collection of images follows the Birth and ultimate Death of a ship. From the craft and pride in its production and the joy in its performance, to the devastation and price of its destruction. A blog about this fascinating collection can been viewed here on the Tyne & Wear Archives & Museums website. (Copyright) We're happy for you to share these digital images within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.ukSubjects

ships | shipbuilding | shipyard | blackandwhitephotograph | plates | hawthornleslieyard | hebburn | maritimeheritage | engineering | late1930s | 1960s | workers | birth | ship | death | wagner | dortmund | fascinating | unusual | floor | wall | ceiling | table | roller | bar | machine | mechanical | operation | signage | noticeboard | metal | steel | controls | lever | measurements | bolt | nut | parts | debris | tinsheet | plank | structure | frame | belt | pipe | cylinder | coat | shirt | hat | uniform | hand | arm | head | process | pile | attentive | concentrationLicense

No known copyright restrictionsSite sourced from

Tyne & Wear Archives & Museums | FlickRAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata