Searching for membrane : 94 results found | RSS Feed for this search

1 2 3 4

6.021J Quantitative Physiology: Cells and Tissues (MIT) 6.021J Quantitative Physiology: Cells and Tissues (MIT)

Description

This course is jointly offered through four departments, available to both undergraduates and graduates. This course introduces the principles of mass transport and electrical signal generation for biological membranes, cells, and tissues. Topics covered include: mass transport through membranes (diffusion, osmosis, chemically mediated, and active transport), electric properties of cells (ion transport), equilibrium, resting, and action potentials, kinetic and molecular properties of single voltage-gated ion channels. Laboratory and computer exercises illustrate the course concepts. Students engage in extensive written and oral communication exercises. This course is worth 4 Engineering Design Points.Technical RequirementsMATLAB® software is required to run the .m files f This course is jointly offered through four departments, available to both undergraduates and graduates. This course introduces the principles of mass transport and electrical signal generation for biological membranes, cells, and tissues. Topics covered include: mass transport through membranes (diffusion, osmosis, chemically mediated, and active transport), electric properties of cells (ion transport), equilibrium, resting, and action potentials, kinetic and molecular properties of single voltage-gated ion channels. Laboratory and computer exercises illustrate the course concepts. Students engage in extensive written and oral communication exercises. This course is worth 4 Engineering Design Points.Technical RequirementsMATLAB® software is required to run the .m files f

Subjects

quantitative physiology | quantitative physiology | cells | cells | tissues | tissues | mass transport | mass transport | electrical signal generation | electrical signal generation | biological membranes | biological membranes | membranes | membranes | diffusion | diffusion | osmosis | osmosis | chemically mediated transport | chemically mediated transport | active transport | active transport | ion transport | ion transport | 6.021 | 6.021 | 2.791 | 2.791 | 2.794 | 2.794 | 6.521 | 6.521 | BE.370 | BE.370 | BE.470 | BE.470 | HST.541 | HST.541

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.592 Statistical Physics in Biology (MIT) 8.592 Statistical Physics in Biology (MIT)

Description

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; Considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.Technical RequirementsAny number of biological sequence comparison software tools can be used to import the .fna files found on this course site. Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; Considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.Technical RequirementsAny number of biological sequence comparison software tools can be used to import the .fna files found on this course site.

Subjects

Bioinformatics | Bioinformatics | DNA | DNA | gene finding | gene finding | sequence comparison | sequence comparison | phylogenetic trees | phylogenetic trees | biopolymers | biopolymers | DNA double helix | DNA double helix | secondary structure of RNA | secondary structure of RNA | protein folding | protein folding | protein motors | membranes | protein motors | membranes | cellular networks | cellular networks | neural networks | neural networks | evolution | evolution | statistical physics | statistical physics | molecular biology | molecular biology | deoxyribonucleic acid | deoxyribonucleic acid | genes | genes | genetics | genetics | gene sequencing | gene sequencing | phylogenetics | phylogenetics | double helix | double helix | RNA | RNA | ribonucleic acid | ribonucleic acid | force | force | motion | motion | packaging | packaging | protein motors | protein motors | membranes | membranes | biochemistry | biochemistry | genome | genome | optimization | optimization | partitioning | partitioning | pattern recognition | pattern recognition | collective behavior | collective behavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.021J Quantitative Physiology: Cells and Tissues (MIT) 6.021J Quantitative Physiology: Cells and Tissues (MIT)

Description

In this subject, we consider two basic topics in cellular biophysics, posed here as questions: Which molecules are transported across cellular membranes, and what are the mechanisms of transport? How do cells maintain their compositions, volume, and membrane potential? How are potentials generated across the membranes of cells? What do these potentials do? Although the questions posed are fundamentally biological questions, the methods for answering these questions are inherently multidisciplinary. As we will see throughout the course, the role of mathematical models is to express concepts precisely enough that precise conclusions can be drawn. In connection with all the topics covered, we will consider both theory and experiment. For the student, the educational value of examining the i In this subject, we consider two basic topics in cellular biophysics, posed here as questions: Which molecules are transported across cellular membranes, and what are the mechanisms of transport? How do cells maintain their compositions, volume, and membrane potential? How are potentials generated across the membranes of cells? What do these potentials do? Although the questions posed are fundamentally biological questions, the methods for answering these questions are inherently multidisciplinary. As we will see throughout the course, the role of mathematical models is to express concepts precisely enough that precise conclusions can be drawn. In connection with all the topics covered, we will consider both theory and experiment. For the student, the educational value of examining the i

Subjects

quantitative physiology | quantitative physiology | cells | cells | tissues | tissues | mass transport | mass transport | electrical signal generation | electrical signal generation | biological membranes | biological membranes | membranes | membranes | diffusion | diffusion | osmosis | osmosis | chemically mediated transport | chemically mediated transport | active transport | active transport | ion transport | ion transport | equilibrium potential | equilibrium potential | resting potential | resting potential | action potential | action potential | voltage-gated ion channels | voltage-gated ion channels | 6.021 | 6.021 | 2.791 | 2.791 | 2.794 | 2.794 | 6.521 | 6.521 | 20.370 | 20.370 | 20.470 | 20.470 | HST.541 | HST.541

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.32 Separation Processes (MIT) 10.32 Separation Processes (MIT)

Description

This course covers the general principles of separation by equilibrium and rate processes. Topics include staged cascades and applications to distillation, absorption, adsorption, and membrane processes. Phase equilibria and the role of diffusion are also covered. This course covers the general principles of separation by equilibrium and rate processes. Topics include staged cascades and applications to distillation, absorption, adsorption, and membrane processes. Phase equilibria and the role of diffusion are also covered.

Subjects

separation process | separation process | chemical mixtures | chemical mixtures | biological mixtures | biological mixtures | distillation | distillation | membrane processes | membrane processes | chromatography | chromatography | adsorption | adsorption | precipitation | precipitation | crystallization | crystallization | filtration | filtration | membrane filtration | membrane filtration | fixed bed adsorption | fixed bed adsorption | reverse osmosis | reverse osmosis | McCabe-Thiele | McCabe-Thiele | stripping | stripping | equilibrium | equilibrium | rate processes | rate processes | staged cascades | staged cascades | absorption | absorption | phase equilibria | phase equilibria | diffusion | diffusion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

B0095P0007

Description

A cat with immune mediated haemolytic anaemia showing signs of jaundice

Subjects

svmsvet | cat | cats | feline | felines | b0095 | imha | immunemediatedhaemolyticanaemia | jaundice | ragdoll | ragdollcat | icterus | jaundicecat | felineimha | felineimmunemediateddisease | haemolyticanaemia | felinehaemolyticanaemia | felineicterus | haemolytic | anaemia | mucousmembranes | ictericmucousmembranes | yellowmucousmembranes | jaundicemucousmembranes

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

B0095P0007

Description

A cat with immune mediated haemolytic anaemia showing signs of jaundice

Subjects

svmsvet | cat | cats | feline | felines | b0095 | imha | immunemediatedhaemolyticanaemia | jaundice | ragdoll | ragdollcat | icterus | jaundicecat | felineimha | felineimmunemediateddisease | haemolyticanaemia | felinehaemolyticanaemia | felineicterus | haemolytic | anaemia | mucousmembranes | ictericmucousmembranes | yellowmucousmembranes | jaundicemucousmembranes

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.310J Molecular, Cellular, and Tissue Biomechanics (MIT) 20.310J Molecular, Cellular, and Tissue Biomechanics (MIT)

Description

This course develops and applies scaling laws and the methods of continuum and statistical mechanics to biomechanical phenomena over a range of length scales, from molecular to cellular to tissue or organ level. This course develops and applies scaling laws and the methods of continuum and statistical mechanics to biomechanical phenomena over a range of length scales, from molecular to cellular to tissue or organ level.

Subjects

biomechanics | biomechanics | molecular mechanics | molecular mechanics | cell mechanics | cell mechanics | Brownian motion | Brownian motion | Reynolds numbers | Reynolds numbers | mechanochemistry | mechanochemistry | Kramers' model | Kramers' model | Bell model | Bell model | viscoelasticity | viscoelasticity | poroelasticity | poroelasticity | optical tweezers | optical tweezers | extracellular matrix | extracellular matrix | collagen | collagen | proteoglycan | proteoglycan | cell membrane | cell membrane | cell motility | cell motility | mechanotransduction | mechanotransduction | cancer | cancer | biological systems | biological systems | molecular biology | molecular biology | cell biology | cell biology | cytoskeleton | cytoskeleton | cell | cell | biophysics | biophysics | cell migration | cell migration | biomembrane | biomembrane | tissue mechanics | tissue mechanics | rheology | rheology | polymer | polymer | length scale | length scale | muscle mechanics | muscle mechanics | experimental methods | experimental methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0014P0013

Description

Mucus membranes of a cat during anaesthesia induced with medetomidine

Subjects

svmsvet | cat | cats | feline | felines | mucousmembranes | mucousmembranecolour | catmucousmembranes | anaesthesia | medetomidine

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0014P0013

Description

Mucus membranes of a cat during anaesthesia induced with medetomidine

Subjects

svmsvet | cat | cats | feline | felines | mucousmembranes | mucousmembranecolour | catmucousmembranes | anaesthesia | medetomidine

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Introduction to Neuroscience (MIT) 9.01 Introduction to Neuroscience (MIT)

Description

This course begins with the study of nerve cells which includes their structure, the propagation of nerve impulses and transfer of information between nerve cells, the effect of drugs on this process, and the development of nerve cells into the brain and spinal cord. Next, sensory systems such as hearing, vision and touch are covered as well as a discussion on how physical energy such as light is converted into neural signals, where these signals travel in the brain and how they are processed. Other topics include the control of voluntary movement, the neurochemical bases of brain diseases, and those systems which control sleep and consciousness, learning and memory. This course begins with the study of nerve cells which includes their structure, the propagation of nerve impulses and transfer of information between nerve cells, the effect of drugs on this process, and the development of nerve cells into the brain and spinal cord. Next, sensory systems such as hearing, vision and touch are covered as well as a discussion on how physical energy such as light is converted into neural signals, where these signals travel in the brain and how they are processed. Other topics include the control of voluntary movement, the neurochemical bases of brain diseases, and those systems which control sleep and consciousness, learning and memory.

Subjects

neuroscience | neuroscience | vision | vision | hearing | hearing | neuroanatomy | neuroanatomy | color vision | color vision | blind spot | blind spot | retinal phototransduction | retinal phototransduction | center-surround receptive fields | center-surround receptive fields | corticalmaps | corticalmaps | primary visual cortex | primary visual cortex | simple cells | simple cells | complex cells | complex cells | extrastriate cortex | extrastriate cortex | ear | ear | cochlea | cochlea | basilar membrane | basilar membrane | auditory transduction | auditory transduction | hair cells | hair cells | phase-locking | phase-locking | tonotopy | tonotopy | sound localization | sound localization | auditory cortex | auditory cortex | somatosensory system | somatosensory system | motor system | motor system | synaptic transmission | synaptic transmission | action potential | action potential | sympathetic neurons | sympathetic neurons | parasympathetic neurons | parasympathetic neurons | cellual neurophysiology | cellual neurophysiology | learning | learning | memory | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.013J Cellular and Molecular Neurobiology: The Brain and Cognitive Sciences III (MIT) 9.013J Cellular and Molecular Neurobiology: The Brain and Cognitive Sciences III (MIT)

Description

Subject covers all major areas of cellular and molecular neurobiology including excitable cells and membranes, ion channels and receptors, synaptic transmission, cell type determination, axon guidance and targeting, neuronal cell biology, synapse formation and plasticity. Includes lectures and exams, and involves presentation and discussion of primary literature. Focus on major concepts and recent advances in experimental neuroscience. Subject covers all major areas of cellular and molecular neurobiology including excitable cells and membranes, ion channels and receptors, synaptic transmission, cell type determination, axon guidance and targeting, neuronal cell biology, synapse formation and plasticity. Includes lectures and exams, and involves presentation and discussion of primary literature. Focus on major concepts and recent advances in experimental neuroscience.

Subjects

cellular | cellular | molecular neurobiology | molecular neurobiology | cells | cells | membranes | membranes | receptors | receptors | synaptic transmission | synaptic transmission | axon guidance | axon guidance | targeting | targeting | neuronal cell biology | neuronal cell biology | synapse formation | synapse formation | plasticity | plasticity | 9.013 | 9.013 | 7.68 | 7.68

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.081J Plates and Shells (MIT) 2.081J Plates and Shells (MIT)

Description

This course explores the following topics: derivation of elastic and plastic stress-strain relations for plate and shell elements; the bending and buckling of rectangular plates; nonlinear geometric effects; post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in naval architecture; the general theory of elastic shells and axisymmetric shells; buckling, crushing and bending strength of cylindrical shells with application to offshore structures; and the application to crashworthiness of vehicles and explosive and impact loading of structures. The class is taught during the first half of term. This course explores the following topics: derivation of elastic and plastic stress-strain relations for plate and shell elements; the bending and buckling of rectangular plates; nonlinear geometric effects; post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in naval architecture; the general theory of elastic shells and axisymmetric shells; buckling, crushing and bending strength of cylindrical shells with application to offshore structures; and the application to crashworthiness of vehicles and explosive and impact loading of structures. The class is taught during the first half of term.

Subjects

plates | plates | shells | shells | engineering strain | engineering strain | strain measure | strain measure | bending moment | bending moment | structural plasticity | structural plasticity | membrane energy | membrane energy | green-lagrangian strain | green-lagrangian strain | bending theory of plates | bending theory of plates | buckling theory of plates | buckling theory of plates | raleigh-ritz quotient | raleigh-ritz quotient | local buckling | local buckling | plastic buckling | plastic buckling | cylindrical shells | cylindrical shells | axial load | axial load | lateral pressure | lateral pressure | hydrostatic pressure | hydrostatic pressure | torsion | torsion | bending boundary conditions | bending boundary conditions | strain-displacement | strain-displacement | 2.081 | 2.081 | 16.230 | 16.230

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.430J Fields, Forces, and Flows in Biological Systems (MIT) BE.430J Fields, Forces, and Flows in Biological Systems (MIT)

Description

This course covers the following topics: conduction, diffusion, convection in electrolytes; fields in heterogeneous media; electrical double layers; Maxwell stress tensor and electrical forces in physiological systems; and fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies considered include membrane transport; electrode interfaces; electrical, mechanical, and chemical transduction in tissues; electrophoretic and electroosmotic flows; diffusion/reaction; and ECG. The course also examines electromechanical and physicochemical interactions in biomaterials and cells; orthopaedic, cardiovascular, and other clinical examples. This course covers the following topics: conduction, diffusion, convection in electrolytes; fields in heterogeneous media; electrical double layers; Maxwell stress tensor and electrical forces in physiological systems; and fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies considered include membrane transport; electrode interfaces; electrical, mechanical, and chemical transduction in tissues; electrophoretic and electroosmotic flows; diffusion/reaction; and ECG. The course also examines electromechanical and physicochemical interactions in biomaterials and cells; orthopaedic, cardiovascular, and other clinical examples.

Subjects

biomaterials | biomaterials | conduction | conduction | diffusion | diffusion | convection in electrolytes | convection in electrolytes | fields in heterogeneous media | fields in heterogeneous media | electrical double layers | electrical double layers | Maxwell stress tensor | Maxwell stress tensor | fluid and solid continua | fluid and solid continua | biological tissues | biological tissues | membrane transport | membrane transport | electrode | electrode | transduction | transduction | electrophoretic flow | electrophoretic flow | electroosmotic flow | electroosmotic flow | diffusion reaction | diffusion reaction | ECG | ECG | orthopaedic | cardiovascular | orthopaedic | cardiovascular | 2.795J | 2.795J | 2.795 | 2.795 | 6.561J | 6.561J | 6.561 | 6.561 | 10.539J | 10.539J | 10.539 | 10.539 | HST.544J | HST.544J | HST.544 | HST.544

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.410J Molecular, Cellular and Tissue Biomechanics (MIT) BE.410J Molecular, Cellular and Tissue Biomechanics (MIT)

Description

This course develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include: structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. Experimental methods for probing structures at the tissue, cellular, and molecular levels will also be investigated.This course was originally co-developed by Professors Alan Grodzinsky, Roger Kamm, and L. Mahadevan. This course develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include: structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. Experimental methods for probing structures at the tissue, cellular, and molecular levels will also be investigated.This course was originally co-developed by Professors Alan Grodzinsky, Roger Kamm, and L. Mahadevan.

Subjects

Scaling laws | Scaling laws | continuum mechanics | continuum mechanics | biomechanical phenomena | biomechanical phenomena | length scales | length scales | tissue structure | tissue structure | molecular basis for macroscopic properties | molecular basis for macroscopic properties | chemical and electrical effects on mechanical behavior | chemical and electrical effects on mechanical behavior | cell mechanics | motility and adhesion | cell mechanics | motility and adhesion | biomembranes | biomembranes | biomolecular mechanics and molecular motors | biomolecular mechanics and molecular motors | Experimental methods | Experimental methods | 2.798J | 2.798J | 6.524J | 6.524J | 10.537 | 10.537 | BE.410 | BE.410 | 2.798 | 2.798 | 6.524 | 6.524

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.01SC Fundamentals of Biology (MIT) 7.01SC Fundamentals of Biology (MIT)

Description

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality. Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.

Subjects

amino acids | amino acids | carboxyl group | carboxyl group | amino group | amino group | side chains | side chains | polar | polar | hydrophobic | hydrophobic | primary structure | primary structure | secondary structure | secondary structure | tertiary structure | tertiary structure | quaternary structure | quaternary structure | x-ray crystallography | x-ray crystallography | alpha helix | alpha helix | beta sheet | beta sheet | ionic bond | ionic bond | non-polar bond | non-polar bond | van der Waals interactions | van der Waals interactions | proton gradient | proton gradient | cyclic photophosphorylation | cyclic photophosphorylation | sunlight | sunlight | ATP | ATP | chlorophyll | chlorophyll | chlorophyll a | chlorophyll a | electrons | electrons | hydrogen sulfide | hydrogen sulfide | biosynthesis | biosynthesis | non-cyclic photophosphorylation | non-cyclic photophosphorylation | photosystem II | photosystem II | photosystem I | photosystem I | cyanobacteria | cyanobacteria | chloroplast | chloroplast | stroma | stroma | thylakoid membrane | thylakoid membrane | Genetics | Genetics | Mendel | Mendel | Mendel's Laws | Mendel's Laws | cloning | cloning | restriction enzymes | restriction enzymes | vector | vector | insert DNA | insert DNA | ligase | ligase | library | library | E.Coli | E.Coli | phosphatase | phosphatase | yeast | yeast | transformation | transformation | ARG1 gene | ARG1 gene | ARG1 mutant yeast | ARG1 mutant yeast | yeast wild-type | yeast wild-type | cloning by complementation | cloning by complementation | Human Beta Globin gene | Human Beta Globin gene | protein tetramer | protein tetramer | vectors | vectors | antibodies | antibodies | human promoter | human promoter | splicing | splicing | mRNA | mRNA | cDNA | cDNA | reverse transcriptase | reverse transcriptase | plasmid | plasmid | electrophoresis | electrophoresis | DNA sequencing | DNA sequencing | primer | primer | template | template | capillary tube | capillary tube | laser detector | laser detector | human genome project | human genome project | recombinant DNA | recombinant DNA | clone | clone | primer walking | primer walking | subcloning | subcloning | computer assembly | computer assembly | shotgun sequencing | shotgun sequencing | open reading frame | open reading frame | databases | databases | polymerase chain reaction (PCR) | polymerase chain reaction (PCR) | polymerase | polymerase | nucleotides | nucleotides | Thermus aquaticus | Thermus aquaticus | Taq polymerase | Taq polymerase | thermocycler | thermocycler | resequencing | resequencing | in vitro fertilization | in vitro fertilization | pre-implantation diagnostics | pre-implantation diagnostics | forensics | forensics | genetic engineering | genetic engineering | DNA sequences | DNA sequences | therapeutic proteins | therapeutic proteins | E. coli | E. coli | disease-causing mutations | disease-causing mutations | cleavage of DNA | cleavage of DNA | bacterial transformation | bacterial transformation | recombinant DNA revolution | recombinant DNA revolution | biotechnology industry | biotechnology industry | Robert Swanson | Robert Swanson | toxin gene | toxin gene | pathogenic bacterium | pathogenic bacterium | biomedical research | biomedical research | S. Pyogenes | S. Pyogenes | origin of replication | origin of replication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.34 Waste Containment and Remediation Technology (MIT) 1.34 Waste Containment and Remediation Technology (MIT)

Description

1.34 focuses on the geotechnical aspects of hazardous waste management, with specific emphasis on the design of land-based waste containment structures and hazardous waste remediation. Topics include: introduction to hazardous waste, definition of hazardous waste, regulatory requirements, waste characteristics, geo-chemistry, and contaminant transport; the design and operation of waste containment structures, landfills, impoundments, and mine-waste disposal; the characterization and remediation of contaminated sites, the superfund law, preliminary site assessment, site investigation techniques, and remediation technologies; and monitoring requirements. 1.34 focuses on the geotechnical aspects of hazardous waste management, with specific emphasis on the design of land-based waste containment structures and hazardous waste remediation. Topics include: introduction to hazardous waste, definition of hazardous waste, regulatory requirements, waste characteristics, geo-chemistry, and contaminant transport; the design and operation of waste containment structures, landfills, impoundments, and mine-waste disposal; the characterization and remediation of contaminated sites, the superfund law, preliminary site assessment, site investigation techniques, and remediation technologies; and monitoring requirements.

Subjects

waste containment | waste containment | waste remediation | waste remediation | soil remediation | soil remediation | groundwater remediation | groundwater remediation | contaminated site | contaminated site | contamination | contamination | waste disposal | waste disposal | mass transport | mass transport | Superfund | Superfund | EPA | EPA | USGS | USGS | air sparging | air sparging | air stripper | air stripper | bioremediation | bioremediation | soil vapor extraction | soil vapor extraction | SVE | SVE | pump and treat | pump and treat | landfill | landfill | leachate | leachate | chlorinated solvent | chlorinated solvent | NAPL | NAPL | LNAPL | LNAPL | DNAPL | DNAPL | TCE | TCE | PCE | PCE | risk assessment | risk assessment | soil liner | soil liner | clay liner | clay liner | geomembrane | geomembrane | brownfield | brownfield | remediation technologies | remediation technologies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.081J Plates and Shells (MIT) 2.081J Plates and Shells (MIT)

Description

This course explores the following topics: derivation of elastic and plastic stress-strain relations for plate and shell elements; the bending and buckling of rectangular plates; nonlinear geometric effects; post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in naval architecture; the general theory of elastic shells and axisymmetric shells; buckling, crushing and bending strength of cylindrical shells with application to offshore structures; and the application to crashworthiness of vehicles and explosive and impact loading of structures. The class is taught during the first half of term. This course explores the following topics: derivation of elastic and plastic stress-strain relations for plate and shell elements; the bending and buckling of rectangular plates; nonlinear geometric effects; post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in naval architecture; the general theory of elastic shells and axisymmetric shells; buckling, crushing and bending strength of cylindrical shells with application to offshore structures; and the application to crashworthiness of vehicles and explosive and impact loading of structures. The class is taught during the first half of term.

Subjects

plates | plates | shells | shells | engineering strain | engineering strain | strain measure | strain measure | bending moment | bending moment | structural plasticity | structural plasticity | membrane energy | membrane energy | green-lagrangian strain | green-lagrangian strain | bending theory of plates | bending theory of plates | buckling theory of plates | buckling theory of plates | raleigh-ritz quotient | raleigh-ritz quotient | local buckling | local buckling | plastic buckling | plastic buckling | cylindrical shells | cylindrical shells | axial load | axial load | lateral pressure | lateral pressure | hydrostatic pressure | hydrostatic pressure | torsion | torsion | bending boundary conditions | bending boundary conditions | strain-displacement | strain-displacement | 2.081 | 2.081 | 16.230 | 16.230

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.29J Cellular Neurobiology (MIT) 7.29J Cellular Neurobiology (MIT)

Description

This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system. This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system.

Subjects

nervous system | nervous system | neurons | neurons | synaptic transmission | synaptic transmission | neurochemistry | neurochemistry | neurodevelopment | neurodevelopment | membrane channels | membrane channels | resting potential | resting potential | action potential | action potential | synapse | synapse | neurotransmitters | neurotransmitters | receptors | receptors | axon | axon | olfaction | olfaction | thermoreception | thermoreception

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.06 Cell Biology (MIT) 7.06 Cell Biology (MIT)

Description

This course deals with the biology of cells of higher organisms: The structure, function, and biosynthesis of cellular membranes and organelles; cell growth and oncogenic transformation; transport, receptors, and cell signaling; the cytoskeleton, the extracellular matrix, and cell movements; chromatin structure and RNA synthesis. This course deals with the biology of cells of higher organisms: The structure, function, and biosynthesis of cellular membranes and organelles; cell growth and oncogenic transformation; transport, receptors, and cell signaling; the cytoskeleton, the extracellular matrix, and cell movements; chromatin structure and RNA synthesis.

Subjects

Biology | Biology | cells | cells | organisms | organisms | biosynthesis | biosynthesis | cellular membranes | cellular membranes | organelles | organelles | cell growth | cell growth | oncogenic transformation | oncogenic transformation | transport | transport | receptors | receptors | cell signaling | cell signaling | cytoskeleton | cytoskeleton | extracellular matrix | extracellular matrix | matrix | matrix | cell movements | cell movements | chromatin | chromatin | RNA | RNA | RNA synthesis | RNA synthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Ubiquitination: The Proteasome and Human Disease (MIT) 7.340 Ubiquitination: The Proteasome and Human Disease (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. This seminar provides a deeper understanding of the post-translational mechanisms evolved by eukaryotic cells to target proteins for degradation. Students learn how proteins are recognized and degraded by specific machinery (the proteasome) through their previous tagging with another small protein, ubiquitin. Additional topics include principles of ubiquitin-proteasome function, its control of the most important cellular pathways, and the implication of this system in different human diseases. Finally, spe This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. This seminar provides a deeper understanding of the post-translational mechanisms evolved by eukaryotic cells to target proteins for degradation. Students learn how proteins are recognized and degraded by specific machinery (the proteasome) through their previous tagging with another small protein, ubiquitin. Additional topics include principles of ubiquitin-proteasome function, its control of the most important cellular pathways, and the implication of this system in different human diseases. Finally, spe

Subjects

ubiquitination | ubiquitination | ubiquitin | ubiquitin | proteasome | proteasome | post-translational mechanisms | post-translational mechanisms | ubiquitin-conjugation system | ubiquitin-conjugation system | neurodegenerative diseases | neurodegenerative diseases | immune response | immune response | cell cycle regulation | cell cycle regulation | apoptosis | apoptosis | signal transduction pathways | signal transduction pathways | tumorigenesis | tumorigenesis | protein degradation | protein degradation | Endoplasmic Reticulum Associated Degradation Pathway | Endoplasmic Reticulum Associated Degradation Pathway | ligases | ligases | translocated proteins | translocated proteins | misfolded proteins | misfolded proteins | trafficking membranes | trafficking membranes | cell cycle control | cell cycle control | programmed cell death | programmed cell death | Huntington's Disease | Huntington's Disease | Von Hippel-Lindau Disease | Von Hippel-Lindau Disease

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.592J Statistical Physics in Biology (MIT) 8.592J Statistical Physics in Biology (MIT)

Description

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution. Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.

Subjects

8.592 | 8.592 | HST.452 | HST.452 | Statistical physics | Statistical physics | Bioinformatics | Bioinformatics | DNA | DNA | gene finding | gene finding | sequence comparison | sequence comparison | phylogenetic trees | phylogenetic trees | biopolymers | biopolymers | DNA double helix | DNA double helix | secondary structure of RNA | secondary structure of RNA | protein folding | protein folding | protein motors | protein motors | membranes | membranes | cellular networks | cellular networks | neural networks | neural networks | evolution | evolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Introduction to Neuroscience (MIT) 9.01 Introduction to Neuroscience (MIT)

Description

This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain. This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain.

Subjects

neuroscience | neuroscience | vision | vision | hearing | hearing | neuroanatomy | neuroanatomy | color vision | color vision | blind spot | blind spot | retinal phototransduction | retinal phototransduction | cortical maps | cortical maps | primary visual cortex | primary visual cortex | complex cells | complex cells | extrastriate cortex | extrastriate cortex | ear | ear | cochlea | cochlea | basilar membrane | basilar membrane | auditory transduction | auditory transduction | hair cells | hair cells | phase-locking | phase-locking | sound localization | sound localization | auditory cortex | auditory cortex | somatosensory system | somatosensory system | motor system | motor system | synaptic transmission | synaptic transmission | action potential | action potential | sympathetic neurons | sympathetic neurons | parasympathetic neurons | parasympathetic neurons | cellual neurophysiology | cellual neurophysiology | learning | learning | memory | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.013J Cell and Molecular Neurobiology (MIT) 9.013J Cell and Molecular Neurobiology (MIT)

Description

This course explores the major areas of cellular and molecular neurobiology, including excitable cells and membranes, ion channels and receptors, synaptic transmission, cell-type determination, axon guidance, neuronal cell biology, neurotrophin signaling and cell survival, synapse formation and neural plasticity. Material includes lectures and exams, and involves presentation and discussion of primary literature. It focuses on major concepts and recent advances in experimental neuroscience. This course explores the major areas of cellular and molecular neurobiology, including excitable cells and membranes, ion channels and receptors, synaptic transmission, cell-type determination, axon guidance, neuronal cell biology, neurotrophin signaling and cell survival, synapse formation and neural plasticity. Material includes lectures and exams, and involves presentation and discussion of primary literature. It focuses on major concepts and recent advances in experimental neuroscience.

Subjects

cellular | cellular | molecular neurobiology | molecular neurobiology | cells | cells | membranes | membranes | ion channels | ion channels | receptors | receptors | synaptic transmission | synaptic transmission | axon guidance | axon guidance | targeting | targeting | neuronal cell biology | neuronal cell biology | synapse formation | synapse formation | plasticity | plasticity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.16 Cellular Neurophysiology (MIT) 9.16 Cellular Neurophysiology (MIT)

Description

This course includes: Surveying the molecular and cellular mechanisms of neuronal communication. Coversion channels in excitable membrane, synaptic transmission, and synaptic plasticity. Correlation of the properties of ion channels and synaptic transmission with their physiological function such as learning and memory. Discussion of the organizational principles for the formation of functional neural networks at synaptic and cellular levels. This course includes: Surveying the molecular and cellular mechanisms of neuronal communication. Coversion channels in excitable membrane, synaptic transmission, and synaptic plasticity. Correlation of the properties of ion channels and synaptic transmission with their physiological function such as learning and memory. Discussion of the organizational principles for the formation of functional neural networks at synaptic and cellular levels.

Subjects

molecular | molecular | cellular mechanisms | cellular mechanisms | neuronal communication | neuronal communication | ion channels | ion channels | excitable membrane | excitable membrane | synaptic transmission | synaptic transmission | synaptic plasticity | synaptic plasticity | physiology | physiology | function | function | neural networks | neural networks

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.445 Separation Processes for Biochemical Products (MIT) 10.445 Separation Processes for Biochemical Products (MIT)

Description

This course serves as an introduction to the fundamental principles of separation operations for the recovery of products from biological processes, membrane filtration, chromatography, centrifugation, cell disruption, extraction, and process design. This course was last taught during the regular school year in the Spring semester of 1999, but has been a part of the MIT Technology and Development Program (TDP) at the Malaysia University of Science and Technology (MUST), as well as at MIT's Professional Institute in more recent years. This course serves as an introduction to the fundamental principles of separation operations for the recovery of products from biological processes, membrane filtration, chromatography, centrifugation, cell disruption, extraction, and process design. This course was last taught during the regular school year in the Spring semester of 1999, but has been a part of the MIT Technology and Development Program (TDP) at the Malaysia University of Science and Technology (MUST), as well as at MIT's Professional Institute in more recent years.

Subjects

separation operations | separation operations | recovery of products from biological processes | recovery of products from biological processes | membrane filtration | membrane filtration | chromatography | chromatography | centrifugation | centrifugation | cell disruption | cell disruption | extraction | extraction | process design | process design | downstream processing | downstream processing | biochemical product recovery | biochemical product recovery | modes of recovery and purification | modes of recovery and purification | biochemical engineering | biochemical engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata