Searching for memory : 325 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13

9.93 Cognitive Neuroscience of Remembering: Creating and Controlling Memory (MIT) 9.93 Cognitive Neuroscience of Remembering: Creating and Controlling Memory (MIT)

Description

This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This survey course is intended to review memory and its impact on our lives. Memories make us who we are, and make us what we are going to become. The loss of memory in amnesia can cause us to lose ourselves. Memory provides a bridge between past and present. Through memory, past sensations, feelings, and ideas that have dropped from conscious awareness can be subsequently recovered to guide current thought and action. In this manner, memory allows us to locate our car in the parking lot at the end of the day or guides us to avoid retelling the same joke to the same friend. This seminar will focus on how memories a This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This survey course is intended to review memory and its impact on our lives. Memories make us who we are, and make us what we are going to become. The loss of memory in amnesia can cause us to lose ourselves. Memory provides a bridge between past and present. Through memory, past sensations, feelings, and ideas that have dropped from conscious awareness can be subsequently recovered to guide current thought and action. In this manner, memory allows us to locate our car in the parking lot at the end of the day or guides us to avoid retelling the same joke to the same friend. This seminar will focus on how memories a

Subjects

human memory | human memory | neural memory | neural memory | cognitive control | cognitive control | recall | recall | retrieval | retrieval | learning | learning | perception | perception | priming | priming | forgetting | forgetting | frontal lobe | frontal lobe | MRI | MRI | brain imaging | brain imaging | amnesia | amnesia | Alzheimer's | Alzheimer's | dementia | dementia | aging | aging | short-term memory | short-term memory | long-term memory | long-term memory | memory loss | memory loss | eyewitness | eyewitness | false memory | false memory | visualization | visualization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.110J Neurology, Neuropsychology, and Neurobiology of Aging (MIT) 9.110J Neurology, Neuropsychology, and Neurobiology of Aging (MIT)

Description

Lectures and discussions in this course cover the clinical, behavioral, and molecular aspects of the brain aging processes in humans. Topics include the loss of memory and other cognitive abilities in normal aging, as well as neurodegenerative conditions such as Parkinson's and Alzheimer's diseases. Discussions based on readings taken from primary literature explore the current research in this field. Lectures and discussions in this course cover the clinical, behavioral, and molecular aspects of the brain aging processes in humans. Topics include the loss of memory and other cognitive abilities in normal aging, as well as neurodegenerative conditions such as Parkinson's and Alzheimer's diseases. Discussions based on readings taken from primary literature explore the current research in this field.

Subjects

aging | aging | memory loss | memory loss | cognition | cognition | neurodegeneration | neurodegeneration | Parkinson's disease | Parkinson's disease | Alzheimer's disease | Alzheimer's disease | aging brain | aging brain | neurobiology | neurobiology | neurology | neurology | neuropsychology | neuropsychology | brain atrophy | brain atrophy | learning | learning | memory | memory | recollection | recollection | emotional memory | emotional memory | implicit memory | implicit memory | Huntington's disease | Huntington's disease | working memory | working memory | dementia | dementia

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.65 Cognitive Processes (MIT) 9.65 Cognitive Processes (MIT)

Description

This undergraduate course is designed to introduce students to cognitive processes. The broad range of topics covers each of the areas in the field of cognition, and presents the current thinking in this discipline. As an introduction to human information processing and learning, the topics include the nature of mental representation and processing, the architecture of memory, pattern recognition, attention, imagery and mental codes, concepts and prototypes, reasoning and problem solving. This undergraduate course is designed to introduce students to cognitive processes. The broad range of topics covers each of the areas in the field of cognition, and presents the current thinking in this discipline. As an introduction to human information processing and learning, the topics include the nature of mental representation and processing, the architecture of memory, pattern recognition, attention, imagery and mental codes, concepts and prototypes, reasoning and problem solving.

Subjects

cognitive science | cognitive science | cognitive processes | cognitive processes | cognition | cognition | the mind | the mind | object recognition | object recognition | attention | attention | memory | memory | associative memory | associative memory | learning | learning | implicit memory | implicit memory | conceptual short term memory | conceptual short term memory | working memory | working memory | language | language | concepts | concepts | prototypes | prototypes | psycholinguistics | psycholinguistics | visual knowledge | visual knowledge | mental codes | mental codes | judgement | judgement | reasoning | reasoning | problem-solving | problem-solving | conscious thought | conscious thought | unconscious thought | unconscious thought

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.823 Computer System Architecture (MIT) 6.823 Computer System Architecture (MIT)

Description

6.823 is a study of the evolution of computer architecture and the factors influencing the design of hardware and software elements of computer systems. Topics may include: instruction set design; processor micro-architecture and pipelining; cache and virtual memory organizations; protection and sharing; I/O and interrupts; in-order and out-of-order superscalar architectures; VLIW machines; vector supercomputers; multithreaded architectures; symmetric multiprocessors; and parallel computers. 6.823 is a study of the evolution of computer architecture and the factors influencing the design of hardware and software elements of computer systems. Topics may include: instruction set design; processor micro-architecture and pipelining; cache and virtual memory organizations; protection and sharing; I/O and interrupts; in-order and out-of-order superscalar architectures; VLIW machines; vector supercomputers; multithreaded architectures; symmetric multiprocessors; and parallel computers.

Subjects

computer architecture | | computer architecture | | computer system architecture | | computer system architecture | | hardware | | hardware | | hardware design | | hardware design | | software | | software | | software design | | software design | | instruction set design | | instruction set design | | processor micro-architecture | | processor micro-architecture | | pipelining | | pipelining | | cache memory | | cache memory | | irtual memory | | irtual memory | | I/O | | I/O | | input/output | | input/output | | interrupts | | interrupts | | superscalar architectures | | superscalar architectures | | VLIW machines | | VLIW machines | | vector supercomputers | | vector supercomputers | | multithreaded architectures | | multithreaded architectures | | symmetric multiprocessors | | symmetric multiprocessors | | parallel computers | parallel computers | computer architecture | computer architecture | computer system architecture | computer system architecture | hardware | hardware | hardware design | hardware design | software | software | software design | software design | instruction set design | instruction set design | processor micro-architecture | processor micro-architecture | pipelining | pipelining | cache memory | cache memory | virtual memory | virtual memory | I/O | I/O | input/output | input/output | interrupts | interrupts | superscalar architectures | superscalar architectures | VLIW machines | VLIW machines | vector supercomputers | vector supercomputers | multithreaded architectures | multithreaded architectures | symmetric multiprocessors | symmetric multiprocessors

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT) 9.03 Neural Basis of Learning and Memory (MIT)

Description

This course highlights the interplay between cellular and molecular storage mechanisms and the cognitive neuroscience of memory, with an emphasis on human and animal models of hippocampal mechanisms and function. Class sessions include lectures and discussion of papers. This course highlights the interplay between cellular and molecular storage mechanisms and the cognitive neuroscience of memory, with an emphasis on human and animal models of hippocampal mechanisms and function. Class sessions include lectures and discussion of papers.

Subjects

learning | learning | memory | memory | neural plasticity | neural plasticity | electrophysiology | electrophysiology | hippocampus | hippocampus | synapse | synapse | aplysia | aplysia | drosophlia | drosophlia | NMDA | NMDA | semantic memory | semantic memory | working memory | working memory | short-term memory | short-term memory | alzheimer's disease | alzheimer's disease | skill learning | skill learning | mirror neurons | mirror neurons | short-term | short-term | long-term | long-term

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT) 9.03 Neural Basis of Learning and Memory (MIT)

Description

This course covers topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. In lectures and discussion of papers, emphasis is placed on human and animal models of hippocampal mechanisms and function. This course covers topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. In lectures and discussion of papers, emphasis is placed on human and animal models of hippocampal mechanisms and function.

Subjects

learning | learning | memory | memory | neural plasticity | neural plasticity | electrophysiology | electrophysiology | hippocampus | hippocampus | synapse | synapse | aplysia | aplysia | drosophlia | drosophlia | NMDA | NMDA | semantic memory | semantic memory | working memory | working memory | short-term memory | short-term memory | alzheimer's disease | alzheimer's disease

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.087 Practical Programming in C (MIT) 6.087 Practical Programming in C (MIT)

Description

This course provides a thorough introduction to the C programming language, the workhorse of the UNIX operating system and lingua franca of embedded processors and micro-controllers. The first two weeks will cover basic syntax and grammar, and expose students to practical programming techniques. The remaining lectures will focus on more advanced concepts, such as dynamic memory allocation, concurrency and synchronization, UNIX signals and process control, library development and usage. Daily programming assignments and weekly laboratory exercises are required. Knowledge of C is highly marketable for summer internships, UROPs, and full-time positions in software and embedded systems development. This course provides a thorough introduction to the C programming language, the workhorse of the UNIX operating system and lingua franca of embedded processors and micro-controllers. The first two weeks will cover basic syntax and grammar, and expose students to practical programming techniques. The remaining lectures will focus on more advanced concepts, such as dynamic memory allocation, concurrency and synchronization, UNIX signals and process control, library development and usage. Daily programming assignments and weekly laboratory exercises are required. Knowledge of C is highly marketable for summer internships, UROPs, and full-time positions in software and embedded systems development.

Subjects

writing C programs | writing C programs | compiling C programs | compiling C programs | variables and datatypes | variables and datatypes | control flow | control flow | input and output | input and output | pointers and memory addressing | pointers and memory addressing | arrays and pointer arithmetic | arrays and pointer arithmetic | memory allocation | memory allocation | stacks and queues | stacks and queues | hash tables | hash tables | C standard library | C standard library | dynamic memory allocation | dynamic memory allocation | multithreading | multithreading | concurrency | concurrency | asynchronous input/output | asynchronous input/output

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.93 Cognitive Neuroscience of Remembering: Creating and Controlling Memory (MIT)

Description

This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This survey course is intended to review memory and its impact on our lives. Memories make us who we are, and make us what we are going to become. The loss of memory in amnesia can cause us to lose ourselves. Memory provides a bridge between past and present. Through memory, past sensations, feelings, and ideas that have dropped from conscious awareness can be subsequently recovered to guide current thought and action. In this manner, memory allows us to locate our car in the parking lot at the end of the day or guides us to avoid retelling the same joke to the same friend. This seminar will focus on how memories a

Subjects

human memory | neural memory | cognitive control | recall | retrieval | learning | perception | priming | forgetting | frontal lobe | MRI | brain imaging | amnesia | Alzheimer's | dementia | aging | short-term memory | long-term memory | memory loss | eyewitness | false memory | visualization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.93 Cognitive Neuroscience of Remembering: Creating and Controlling Memory (MIT)

Description

This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This survey course is intended to review memory and its impact on our lives. Memories make us who we are, and make us what we are going to become. The loss of memory in amnesia can cause us to lose ourselves. Memory provides a bridge between past and present. Through memory, past sensations, feelings, and ideas that have dropped from conscious awareness can be subsequently recovered to guide current thought and action. In this manner, memory allows us to locate our car in the parking lot at the end of the day or guides us to avoid retelling the same joke to the same friend. This seminar will focus on how memories a

Subjects

human memory | neural memory | cognitive control | recall | retrieval | learning | perception | priming | forgetting | frontal lobe | MRI | brain imaging | amnesia | Alzheimer's | dementia | aging | short-term memory | long-term memory | memory loss | eyewitness | false memory | visualization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.081 Human Memory and Learning (MIT) 9.081 Human Memory and Learning (MIT)

Description

Surveys the literature on the cognitive and neural organization of human memory and learning. Includes consideration of working memory and executive control, episodic and semantic memory, and implicit forms of memory. Emphasizes integration of cognitive theory with recent insights from functional neuroimaging (e.g., fMRI and PET). Surveys the literature on the cognitive and neural organization of human memory and learning. Includes consideration of working memory and executive control, episodic and semantic memory, and implicit forms of memory. Emphasizes integration of cognitive theory with recent insights from functional neuroimaging (e.g., fMRI and PET).

Subjects

cognitive | cognitive | neural organization | neural organization | human memory | human memory | learning | learning | working memory | working memory | executive control | executive control | episodic | episodic | semantic memory | semantic memory | functional neuroimaging | functional neuroimaging | fMRI | fMRI | PET | PET

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.110J Neurology, Neuropsychology, and Neurobiology of Aging (MIT)

Description

Lectures and discussions in this course cover the clinical, behavioral, and molecular aspects of the brain aging processes in humans. Topics include the loss of memory and other cognitive abilities in normal aging, as well as neurodegenerative conditions such as Parkinson's and Alzheimer's diseases. Discussions based on readings taken from primary literature explore the current research in this field.

Subjects

aging | memory loss | cognition | neurodegeneration | Parkinson's disease | Alzheimer's disease | aging brain | neurobiology | neurology | neuropsychology | brain atrophy | learning | memory | recollection | emotional memory | implicit memory | Huntington's disease | working memory | dementia

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.110J Neurology, Neuropsychology, and Neurobiology of Aging (MIT)

Description

Lectures and discussions in this course cover the clinical, behavioral, and molecular aspects of the brain aging processes in humans. Topics include the loss of memory and other cognitive abilities in normal aging, as well as neurodegenerative conditions such as Parkinson's and Alzheimer's diseases. Discussions based on readings taken from primary literature explore the current research in this field.

Subjects

aging | memory loss | cognition | neurodegeneration | Parkinson's disease | Alzheimer's disease | aging brain | neurobiology | neurology | neuropsychology | brain atrophy | learning | memory | recollection | emotional memory | implicit memory | Huntington's disease | working memory | dementia

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.65 Cognitive Processes (MIT)

Description

This undergraduate course is designed to introduce students to cognitive processes. The broad range of topics covers each of the areas in the field of cognition, and presents the current thinking in this discipline. As an introduction to human information processing and learning, the topics include the nature of mental representation and processing, the architecture of memory, pattern recognition, attention, imagery and mental codes, concepts and prototypes, reasoning and problem solving.

Subjects

cognitive science | cognitive processes | cognition | the mind | object recognition | attention | memory | associative memory | learning | implicit memory | conceptual short term memory | working memory | language | concepts | prototypes | psycholinguistics | visual knowledge | mental codes | judgement | reasoning | problem-solving | conscious thought | unconscious thought

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.65 Cognitive Processes (MIT)

Description

This undergraduate course is designed to introduce students to cognitive processes. The broad range of topics covers each of the areas in the field of cognition, and presents the current thinking in this discipline. As an introduction to human information processing and learning, the topics include the nature of mental representation and processing, the architecture of memory, pattern recognition, attention, imagery and mental codes, concepts and prototypes, reasoning and problem solving.

Subjects

cognitive science | cognitive processes | cognition | the mind | object recognition | attention | memory | associative memory | learning | implicit memory | conceptual short term memory | working memory | language | concepts | prototypes | psycholinguistics | visual knowledge | mental codes | judgement | reasoning | problem-solving | conscious thought | unconscious thought

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.346 Synaptic Plasticity and Memory, from Molecules to Behavior (MIT) 7.346 Synaptic Plasticity and Memory, from Molecules to Behavior (MIT)

Description

In this course we will discover how innovative technologies combined with profound hypotheses have given rise to our current understanding of neuroscience. We will study both new and classical primary research papers with a focus on the plasticity between synapses in a brain structure called the hippocampus, which is believed to underlie the ability to create and retrieve certain classes of memories. We will discuss the basic electrical properties of neurons and how they fire. We will see how firing properties can change with experience, and we will study the biochemical basis of these changes. We will learn how molecular biology can be used to specifically change the biochemical properties of brain circuits, and we will see how these circuits form a representation of space giving rise to In this course we will discover how innovative technologies combined with profound hypotheses have given rise to our current understanding of neuroscience. We will study both new and classical primary research papers with a focus on the plasticity between synapses in a brain structure called the hippocampus, which is believed to underlie the ability to create and retrieve certain classes of memories. We will discuss the basic electrical properties of neurons and how they fire. We will see how firing properties can change with experience, and we will study the biochemical basis of these changes. We will learn how molecular biology can be used to specifically change the biochemical properties of brain circuits, and we will see how these circuits form a representation of space giving rise to

Subjects

synapse | synapse | memory | memory | neuroscience | neuroscience | plasticity | plasticity | hippocampus | hippocampus | LTP | LTP | molecular mechanism | molecular mechanism | Morris water maze | Morris water maze | place cells | place cells | NMDA | NMDA | synaptic tagging | synaptic tagging | long term depression | long term depression | cortex | cortex | synaptic plasticity | synaptic plasticity | neuronal circuits | neuronal circuits | specificity | specificity | CA1 | CA1 | grid cells | grid cells | schema | schema | fear memory | fear memory | biochemistry | biochemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.851 Advanced Data Structures (MIT) 6.851 Advanced Data Structures (MIT)

Description

Includes audio/video content: AV lectures. Data structures play a central role in modern computer science. You interact with data structures even more often than with algorithms (think Google, your mail server, and even your network routers). In addition, data structures are essential building blocks in obtaining efficient algorithms. This course covers major results and current directions of research in data structure. Acknowledgments Thanks to videographers Martin Demaine and Justin Zhang. Includes audio/video content: AV lectures. Data structures play a central role in modern computer science. You interact with data structures even more often than with algorithms (think Google, your mail server, and even your network routers). In addition, data structures are essential building blocks in obtaining efficient algorithms. This course covers major results and current directions of research in data structure. Acknowledgments Thanks to videographers Martin Demaine and Justin Zhang.

Subjects

data | data | structures | structures | data structures | data structures | computers | computers | computer science | computer science | strings | strings | dynamic graphs | dynamic graphs | integers | integers | hash | hash | hashing | hashing | hashish | hashish | hashtag | hashtag | hash tag | hash tag | hash tagger | hash tagger | memory | memory | memory heirarchy | memory heirarchy | binary tree | binary tree | binary search | binary search | binary search tree | binary search tree | time travel | time travel | back to the future | back to the future | forward to the past | forward to the past | database | database | table | table | database table | database table | cache | cache | caching | caching | mad cache money | mad cache money | logarithmic time | logarithmic time | eurythmic time | eurythmic time | operations | operations | search | search | heaps | heaps

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Neuroscience and Behavior (MIT) 9.01 Neuroscience and Behavior (MIT)

Description

Relation of structure and function at various levels of neuronal integration. Topics include: functional neuroanatomy and neurophysiology, sensory and motor systems, centrally programmed behavior, sensory systems, sleep and dreaming, motivation and reward, emotional displays of various types, "higher functions" and the neocortex, and neural processes in learning and memory. In order to improve writing skills in describing experiments and reviewing journal publications in neuroscience, students are required to complete four homework assignments and one literature review with revision. Technical RequirementsMedia player software, such as Quicktime Player, RealOne Player, or Windows Media Player, is required to run the .mp3 files found on this cou Relation of structure and function at various levels of neuronal integration. Topics include: functional neuroanatomy and neurophysiology, sensory and motor systems, centrally programmed behavior, sensory systems, sleep and dreaming, motivation and reward, emotional displays of various types, "higher functions" and the neocortex, and neural processes in learning and memory. In order to improve writing skills in describing experiments and reviewing journal publications in neuroscience, students are required to complete four homework assignments and one literature review with revision. Technical RequirementsMedia player software, such as Quicktime Player, RealOne Player, or Windows Media Player, is required to run the .mp3 files found on this cou

Subjects

functional neuroanatomy | functional neurophysiology | motor systems | centrally programmed behavior | sensory systems | sleep | dreaming | motivation | reward | emotional displays | higher functions" | neocortex | neural processes in learning and memory | functional neuroanatomy | functional neurophysiology | motor systems | centrally programmed behavior | sensory systems | sleep | dreaming | motivation | reward | emotional displays | higher functions" | neocortex | neural processes in learning and memory | functional neuroanatomy | functional neuroanatomy | functional neurophysiology | functional neurophysiology | motor systems | motor systems | centrally programmed behavior | centrally programmed behavior | sensory systems | sensory systems | sleep | sleep | dreaming | dreaming | motivation | motivation | reward | reward | emotional displays | emotional displays | higher functions | higher functions | neocortex | neocortex | neural processes in learning and memory | neural processes in learning and memory | Neurobehavior | Neurobehavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT)

Description

This course covers topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. In lectures and discussion of papers, emphasis is placed on human and animal models of hippocampal mechanisms and function.

Subjects

learning | memory | neural plasticity | electrophysiology | hippocampus | synapse | aplysia | drosophlia | NMDA | semantic memory | working memory | short-term memory | alzheimer's disease

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Sistemas Operativos I Sistemas Operativos I

Description

La asignatura de Sistemas Operativos I se imparte en el segundo cuatrimestre del segundo curso y tiene asignados 6 créditos troncales (3 teóricos + 3 prácticos). Los descriptores según BOE de esta asignatura son los siguientes: Organización, Estructura y Servicio de los Sistemas Operativos. Gestión y administración de memoria y de procesos. Gestión de entrada/salida. Sistema de ficheros. La asignatura de Sistemas Operativos I se imparte en el segundo cuatrimestre del segundo curso y tiene asignados 6 créditos troncales (3 teóricos + 3 prácticos). Los descriptores según BOE de esta asignatura son los siguientes: Organización, Estructura y Servicio de los Sistemas Operativos. Gestión y administración de memoria y de procesos. Gestión de entrada/salida. Sistema de ficheros.

Subjects

thread scheduling | thread scheduling | process | process | Arquitectura y Tecnología de Computadores | Arquitectura y Tecnología de Computadores | proceso | proceso | paginación | paginación | programmed I/O | programmed I/O | process scheduling | process scheduling | entrada/salida | entrada/salida | planificación de procesos | planificación de procesos | controlador | controlador | virtual memory | virtual memory | input/output | input/output | disk space managemente | disk space managemente | E/S dirigida por interrupciones | E/S dirigida por interrupciones | system call | system call | gestión de espacio en disco | gestión de espacio en disco | files | files | llamada al sistema | llamada al sistema | entrada salida programada | entrada salida programada | page replacement algorithms | page replacement algorithms | discos | discos | intercambio | intercambio | controller | controller | pages tables | pages tables | algoritmos de reemplazamiento de páginas | algoritmos de reemplazamiento de páginas | directorios | directorios | ficheros | ficheros | swapping | swapping | thread | thread | tabla de páginas | tabla de páginas | dispositivo | dispositivo | directories | directories | disks | disks | devices | devices | paging | paging | gestión de memoria | gestión de memoria | interrupt-driven I/O | interrupt-driven I/O | memoria virtual | memoria virtual | memory management | memory management

License

Copyright 2009, by the Contributing Authors http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.upm.es/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.828 Operating System Engineering (MIT) 6.828 Operating System Engineering (MIT)

Description

6.828 teaches the fundamentals of engineering operating systems. The following topics are studied in detail: virtual memory, kernel and user mode, system calls, threads, context switches, interrupts, interprocess communication, coordination of concurrent activities, and the interface between software and hardware. Most importantly, the interactions between these concepts are examined. The course is divided into two blocks; the first block introduces one operating system, UNIX® v6, in detail. The second block of lectures covers important operating systems concepts invented after UNIX® v6, which was introduced in 1976.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is req 6.828 teaches the fundamentals of engineering operating systems. The following topics are studied in detail: virtual memory, kernel and user mode, system calls, threads, context switches, interrupts, interprocess communication, coordination of concurrent activities, and the interface between software and hardware. Most importantly, the interactions between these concepts are examined. The course is divided into two blocks; the first block introduces one operating system, UNIX® v6, in detail. The second block of lectures covers important operating systems concepts invented after UNIX® v6, which was introduced in 1976.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is req

Subjects

operating system | operating system | OS | OS | UNIX | UNIX | virtual memory | virtual memory | threads | threads | context switches | context switches | kernels | kernels | interrupts | interrupts | system calls | system calls | interprocess communication | interprocess communication | C | C | x86 assembly | x86 assembly | programming | programming | computer engineering | computer engineering | kernal mode | kernal mode | user mode | user mode | concurrent activities | concurrent activities | interfaces | interfaces | software/hardware interface | software/hardware interface | boot loaders | boot loaders | memory management | memory management | processes switching | processes switching | fork | fork | IPC | IPC | file systems | file systems | shells | shells | Exec | Exec

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.012 The Brain and Cognitive Sciences II (MIT) 9.012 The Brain and Cognitive Sciences II (MIT)

Description

This class is the second half of an intensive survey of cognitive science for first-year graduate students. Topics include visual perception, language, memory, cognitive architecture, learning, reasoning, decision-making, and cognitive development. Topics covered are from behavioral, computational, and neural perspectives. This class is the second half of an intensive survey of cognitive science for first-year graduate students. Topics include visual perception, language, memory, cognitive architecture, learning, reasoning, decision-making, and cognitive development. Topics covered are from behavioral, computational, and neural perspectives.

Subjects

brain | brain | behavioral | behavioral | perception | perception | attention | attention | working memory | working memory | recognition | recognition | recall | recall | language | language | cognitive science | cognitive science | computation | computation | visual perception | visual perception | memory | memory | cognitive architecture | cognitive architecture | learning | learning | reasoning | reasoning | decision-making | decision-making | cognitive development | cognitive development | behavioral perspective | behavioral perspective | computational perspective | computational perspective | neural perspective | neural perspective

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.088 Introduction to C Memory Management and C++ Object-Oriented Programming (MIT) 6.088 Introduction to C Memory Management and C++ Object-Oriented Programming (MIT)

Description

Ever hang your head in shame after your Python program wasn't as fast as your friend's C program? Ever wish you could use objects without having to use Java? Join us for this fun introduction to C and C++! We will take you through a tour that will start with writing simple C programs, go deep into the caves of C memory manipulation, resurface with an introduction to using C++ classes, dive deeper into advanced C++ class use and the C++ Standard Template Libraries. We'll wrap up by teaching you some tricks of the trade that you may need for tech interviews. We see this as a "C/C++ empowerment" course: we want you to come away understanding why you would want to use C over another language (control over memory, probably for performance reasons), why you would want to use C++ ra Ever hang your head in shame after your Python program wasn't as fast as your friend's C program? Ever wish you could use objects without having to use Java? Join us for this fun introduction to C and C++! We will take you through a tour that will start with writing simple C programs, go deep into the caves of C memory manipulation, resurface with an introduction to using C++ classes, dive deeper into advanced C++ class use and the C++ Standard Template Libraries. We'll wrap up by teaching you some tricks of the trade that you may need for tech interviews. We see this as a "C/C++ empowerment" course: we want you to come away understanding why you would want to use C over another language (control over memory, probably for performance reasons), why you would want to use C++ ra

Subjects

C | C | C++ | C++ | programming languages | programming languages | abstraction | abstraction | memory management | memory management | speed | speed | pointers | pointers | structs | structs | memory manipulation | memory manipulation | object oriented programming | object oriented programming | oop | oop | objects | objects | encapsulation | encapsulation | classes | classes | input | input | output | output | inheritance | inheritance | polymorphism | polymorphism | templates | templates | standard library | standard library | binary search tree | binary search tree | arithmetic expression | arithmetic expression | eval | eval | print | print

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.52-A Investigating the Neural Substrates of Remote Memory using fMRI (MIT) 9.52-A Investigating the Neural Substrates of Remote Memory using fMRI (MIT)

Description

This course is an investigation to distinguish episodic memory, which is memory of personal events, from semantic memory, which is general knowledge independent of time and place. This course is an investigation to distinguish episodic memory, which is memory of personal events, from semantic memory, which is general knowledge independent of time and place.

Subjects

semantic memory | semantic memory | episodic memory | episodic memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.823 Computer System Architecture (MIT)

Description

6.823 is a study of the evolution of computer architecture and the factors influencing the design of hardware and software elements of computer systems. Topics may include: instruction set design; processor micro-architecture and pipelining; cache and virtual memory organizations; protection and sharing; I/O and interrupts; in-order and out-of-order superscalar architectures; VLIW machines; vector supercomputers; multithreaded architectures; symmetric multiprocessors; and parallel computers.

Subjects

computer architecture | | computer system architecture | | hardware | | hardware design | | software | | software design | | instruction set design | | processor micro-architecture | | pipelining | | cache memory | | irtual memory | | I/O | | input/output | | interrupts | | superscalar architectures | | VLIW machines | | vector supercomputers | | multithreaded architectures | | symmetric multiprocessors | | parallel computers | computer architecture | computer system architecture | hardware | hardware design | software | software design | instruction set design | processor micro-architecture | pipelining | cache memory | virtual memory | I/O | input/output | interrupts | superscalar architectures | VLIW machines | vector supercomputers | multithreaded architectures | symmetric multiprocessors

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT)

Description

This course highlights the interplay between cellular and molecular storage mechanisms and the cognitive neuroscience of memory, with an emphasis on human and animal models of hippocampal mechanisms and function. Class sessions include lectures and discussion of papers.

Subjects

learning | memory | neural plasticity | electrophysiology | hippocampus | synapse | aplysia | drosophlia | NMDA | semantic memory | working memory | short-term memory | alzheimer's disease | skill learning | mirror neurons | short-term | long-term

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata