Searching for metal : 2049 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

5.04 Principles of Inorganic Chemistry II (MIT) 5.04 Principles of Inorganic Chemistry II (MIT)

Description

This course provides a systematic presentation of the chemical applications of group theory with emphasis on the formal development of the subject and its applications to the physical methods of inorganic chemical compounds. The electronic structure of molecules will be developed. Against this backdrop, the optical, vibrational, and magnetic properties of transition metal complexes are presented and their investigation by the appropriate spectroscopy is described. This course provides a systematic presentation of the chemical applications of group theory with emphasis on the formal development of the subject and its applications to the physical methods of inorganic chemical compounds. The electronic structure of molecules will be developed. Against this backdrop, the optical, vibrational, and magnetic properties of transition metal complexes are presented and their investigation by the appropriate spectroscopy is described.

Subjects

inorganic chemistry | inorganic chemistry | group theory | group theory | transition metal complexes | transition metal complexes | symmetry element | symmetry element | point group | point group | LCAO | LCAO | metal metal bonding | metal metal bonding | vibrational spectroscopy | vibrational spectroscopy | character tables | character tables | sandwich compounds | sandwich compounds

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Microelectronics Processing Technology (MIT) 6.152J Microelectronics Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology. This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | microelectronics | Microelectronics processing | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits | integrated circuits | vacuum | vacuum | chemical vapor deposition | chemical vapor deposition | CVD | CVD | oxidation | oxidation | diffusion | diffusion | implantation | implantation | lithography | lithography | soft lithography | soft lithography | etching | etching | sputtering | sputtering | evaporation | evaporation | interconnect | interconnect | metallization | metallization | crystal growth | crystal growth | reliability | reliability | fabrication | fabrication | processing | processing | photolithography | photolithography | physical vapor deposition | physical vapor deposition | MOS | MOS | MOS capacitor | MOS capacitor | microcantilever | microcantilever | microfluidic | microfluidic | 6.152 | 6.152 | 3.155 | 3.155

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.40J Physical Metallurgy (MIT) 3.40J Physical Metallurgy (MIT)

Description

Discusses structure-property relationships in metallic alloys selected to illustrate some basic concepts of physical metallurgy and alloy design. Fundamentals of annealing, spinodal decomposition, nucleation, growth, and particle coarsening. Concentrates on structure, structure formation, and structure-properties relationships. Also considers structural features: grain size, interstitial and substitutional solutes, precipitates, second-phase particles, and eutectoids. Examples from advanced structural alloys and low-dimensional alloys for magnetic recording media and integrated circuits. Discusses structure-property relationships in metallic alloys selected to illustrate some basic concepts of physical metallurgy and alloy design. Fundamentals of annealing, spinodal decomposition, nucleation, growth, and particle coarsening. Concentrates on structure, structure formation, and structure-properties relationships. Also considers structural features: grain size, interstitial and substitutional solutes, precipitates, second-phase particles, and eutectoids. Examples from advanced structural alloys and low-dimensional alloys for magnetic recording media and integrated circuits.

Subjects

metallic alloys | metallic alloys | physical metallurgy | physical metallurgy | alloy design | alloy design | annealing | annealing | spinodal decomposition | spinodal decomposition | nucleation | nucleation | particle coarsening | particle coarsening | structure | structure | structure formation | structure formation | structure-properties relationships | structure-properties relationships | structural features | structural features | 3.40 | 3.40 | 22.71 | 22.71

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.720J Integrated Microelectronic Devices (MIT) 6.720J Integrated Microelectronic Devices (MIT)

Description

6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points. 6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points.

Subjects

integrated microelectronic devices | integrated microelectronic devices | physics | physics | silicon | silicon | circuit | circuit | semiconductor | semiconductor | p-n junction | p-n junction | metal-oxide semiconductor structure | metal-oxide semiconductor structure | metal-semiconductor junction | metal-semiconductor junction | MOS field-effect transistor | MOS field-effect transistor | bipolar junction transistor | bipolar junction transistor | energy band diagram | energy band diagram | short-channel MOSFET | short-channel MOSFET | device characterization | device characterization | device design | device design | 6.720 | 6.720 | 3.43 | 3.43

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.051J Materials for Biomedical Applications (MIT) 3.051J Materials for Biomedical Applications (MIT)

Description

This course gives an introduction to the interactions between proteins, cells and surfaces of biomaterials. It includes surface chemistry and physics of selected metals, polymers and ceramics, modification of biomaterials surfaces, and surface characterization methodology; quantitative assays of cell behavior in culture and methods of statistical analysis; organ replacement therapies and acute and chronic response to implanted biomaterials. The course includes topics in biosensors, drug delivery and tissue engineering. This course gives an introduction to the interactions between proteins, cells and surfaces of biomaterials. It includes surface chemistry and physics of selected metals, polymers and ceramics, modification of biomaterials surfaces, and surface characterization methodology; quantitative assays of cell behavior in culture and methods of statistical analysis; organ replacement therapies and acute and chronic response to implanted biomaterials. The course includes topics in biosensors, drug delivery and tissue engineering.

Subjects

Interactions between proteins | Interactions between proteins | cells | cells | Surface chemistry and physics of metals | Surface chemistry and physics of metals | polymers and ceramics | polymers and ceramics | Surface characterization methodology | Surface characterization methodology | Quantitative assays of cell behavior | Quantitative assays of cell behavior | Organ replacement therapies | Organ replacement therapies | Acute and chronic response to implanted biomaterials | Acute and chronic response to implanted biomaterials | Biosensors | Biosensors | drug delivery and tissue engineering | drug delivery and tissue engineering | Interactions between proteins | cells | Interactions between proteins | cells | Surface chemistry and physics of metals | polymers and ceramics | Surface chemistry and physics of metals | polymers and ceramics | Biosensors | drug delivery and tissue engineering | Biosensors | drug delivery and tissue engineering | BE.340J | BE.340J | 3.051 | 3.051 | BE.340 | BE.340 | 20.340 | 20.340

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.094 Materials in Human Experience (MIT) 3.094 Materials in Human Experience (MIT)

Description

This course examines the ways in which people in ancient and contemporary societies have selected, evaluated, and used materials of nature, transforming them to objects of material culture. Some examples are: glass in ancient Egypt and Rome; sounds and colors of powerful metals in Mesoamerica; cloth and fiber technologies in the Inca empire. It also explores ideological and aesthetic criteria often influential in materials development. Laboratory/workshop sessions provide hands-on experience with materials discussed in class. This course complements 3.091. This course examines the ways in which people in ancient and contemporary societies have selected, evaluated, and used materials of nature, transforming them to objects of material culture. Some examples are: glass in ancient Egypt and Rome; sounds and colors of powerful metals in Mesoamerica; cloth and fiber technologies in the Inca empire. It also explores ideological and aesthetic criteria often influential in materials development. Laboratory/workshop sessions provide hands-on experience with materials discussed in class. This course complements 3.091.

Subjects

ancient and contemporary societies | ancient and contemporary societies | materials of nature | materials of nature | objects of material culture | objects of material culture | glass | glass | ancient Egypt and Rome | ancient Egypt and Rome | metals | metals | Mesoamerica | Mesoamerica | cloth and fiber technologies | cloth and fiber technologies | the Inca empire | the Inca empire | ideological and aesthetic criteria | ideological and aesthetic criteria | materials development | materials development | ancient glass | ancient glass | ancient Andean metallurgy | ancient Andean metallurgy | rubber processing | rubber processing | materials processing | materials processing | materials engineering | materials engineering | pre-modern technology | pre-modern technology | ceramics | ceramics | fibers | fibers | ideology | ideology | values | values | anthropology | anthropology | archaeology | archaeology | history | history | culture | culture

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.04 Principles of Inorganic Chemistry II (MIT) 5.04 Principles of Inorganic Chemistry II (MIT)

Description

This course provides a systematic presentation of the chemical applications of group theory with emphasis on the formal development of the subject and its applications to the physical methods of inorganic chemical compounds. Against the backdrop of electronic structure, the electronic, vibrational, and magnetic properties of transition metal complexes are presented and their investigation by the appropriate spectroscopy described. This course provides a systematic presentation of the chemical applications of group theory with emphasis on the formal development of the subject and its applications to the physical methods of inorganic chemical compounds. Against the backdrop of electronic structure, the electronic, vibrational, and magnetic properties of transition metal complexes are presented and their investigation by the appropriate spectroscopy described.

Subjects

inorganic chemistry | inorganic chemistry | group theory | group theory | electronic structure of molecules | electronic structure of molecules | transition metal complexes | transition metal complexes | spectroscopy | spectroscopy | symmetry elements | symmetry elements | mathematical groups | mathematical groups | character tables | character tables | molecular point groups | molecular point groups | Huckel Theory | Huckel Theory | N-Dimensional cyclic systems | N-Dimensional cyclic systems | solid state theory | solid state theory | band theory | band theory | frontier molecular orbitals | frontier molecular orbitals | similarity transformations | similarity transformations | complexes | complexes | organometallic complexes | organometallic complexes | two electron bond | two electron bond | vibrational spectroscopy | vibrational spectroscopy | symmetry | symmetry | overtones | overtones | normal coordinat analysis | normal coordinat analysis | AOM | AOM | single electron CFT | single electron CFT | tanabe-sugano diagram | tanabe-sugano diagram | ligand | ligand | crystal field theory | crystal field theory | LCAO | LCAO

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.720J Integrated Microelectronic Devices (MIT) 6.720J Integrated Microelectronic Devices (MIT)

Description

6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points. Acknowledgments Prof. Jesús del Alamo would like to thank Prof. Harry Tuller for his support of and help in teaching the course. 6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points. Acknowledgments Prof. Jesús del Alamo would like to thank Prof. Harry Tuller for his support of and help in teaching the course.

Subjects

integrated microelectronic devices | integrated microelectronic devices | physics | physics | silicon | silicon | circuit | circuit | semiconductor | semiconductor | p-n junction | p-n junction | metal-oxide semiconductor structure | metal-oxide semiconductor structure | metal-semiconductor junction | metal-semiconductor junction | MOS field-effect transistor | MOS field-effect transistor | bipolar junction transistor | bipolar junction transistor | energy band diagram | energy band diagram | short-channel MOSFET | short-channel MOSFET | device characterization | device characterization | device design | device design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.772 Compound Semiconductor Devices (MIT) 6.772 Compound Semiconductor Devices (MIT)

Description

This course outlines the physics, modeling, application, and technology of compound semiconductors (primarily III-Vs) in electronic, optoelectronic, and photonic devices and integrated circuits. Topics include: properties, preparation, and processing of compound semiconductors; theory and practice of heterojunctions, quantum structures, and pseudomorphic strained layers; metal-semiconductor field effect transistors (MESFETs); heterojunction field effect transistors (HFETs) and bipolar transistors (HBTs); photodiodes, vertical-and in-plane-cavity laser diodes, and other optoelectronic devices. This course outlines the physics, modeling, application, and technology of compound semiconductors (primarily III-Vs) in electronic, optoelectronic, and photonic devices and integrated circuits. Topics include: properties, preparation, and processing of compound semiconductors; theory and practice of heterojunctions, quantum structures, and pseudomorphic strained layers; metal-semiconductor field effect transistors (MESFETs); heterojunction field effect transistors (HFETs) and bipolar transistors (HBTs); photodiodes, vertical-and in-plane-cavity laser diodes, and other optoelectronic devices.

Subjects

physics | physics | modeling | modeling | application | application | technology of compound semiconductors | technology of compound semiconductors | electronic | electronic | optoelectronic | optoelectronic | photonic devices | photonic devices | integrated circuits | integrated circuits | properties | properties | heterojunctions | heterojunctions | quantum structures | quantum structures | pseudomorphic strained layers | pseudomorphic strained layers | metal-semiconductor field effect transistors (MESFETs) | metal-semiconductor field effect transistors (MESFETs) | heterojunction field effect transistors (HFETs) | heterojunction field effect transistors (HFETs) | bipolar transistors (HBTs) | bipolar transistors (HBTs) | photodiodes | photodiodes | laser diodes | laser diodes | optoelectronic devices | optoelectronic devices | applications | applications | compound semiconductors | compound semiconductors | electronic devices | electronic devices | compound semiconductor processing | compound semiconductor processing | metal-semiconductor field effect transistors | metal-semiconductor field effect transistors | MESFET | MESFET | heterojunction field effect transistors | heterojunction field effect transistors | HFET | HFET | bipolar transistors | bipolar transistors | HBT | HBT | vertical-cavity laser diodes | vertical-cavity laser diodes | in-plane-cavity laser diodes | in-plane-cavity laser diodes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.511 Theory of Solids I (MIT) 8.511 Theory of Solids I (MIT)

Description

This is the first term of a theoretical treatment of the physics of solids. Topics covered include crystal structure and band theory, density functional theory, a survey of properties of metals and semiconductors, quantum Hall effect, phonons, electron phonon interaction and superconductivity. This is the first term of a theoretical treatment of the physics of solids. Topics covered include crystal structure and band theory, density functional theory, a survey of properties of metals and semiconductors, quantum Hall effect, phonons, electron phonon interaction and superconductivity.

Subjects

physics of solids | physics of solids | elementary excitations | elementary excitations | symmetry | symmetry | theory of representations | theory of representations | energy bands | energy bands | excitons | excitons | critical points | critical points | response functions | response functions | interactions in the electron gas | interactions in the electron gas | electronic structure of metals | semimetals | electronic structure of metals | semimetals | semiconductors | semiconductors | insulators | insulators | Free electron model | Free electron model | Crystalline lattice | Crystalline lattice | Debye Waller factor | Debye Waller factor | Bravais lattice | Bravais lattice | Pseudopotential | Pseudopotential | van Hove singularity | van Hove singularity | Bloch oscillation | Bloch oscillation | quantization of orbits | quantization of orbits | de Haas-van Alphen effect | de Haas-van Alphen effect | Quantum Hall effect | Quantum Hall effect | Electron-electron interaction | Electron-electron interaction | Hartree-Fock approximation | Hartree-Fock approximation | Exchange energy for Jellium | Exchange energy for Jellium | Density functional theory | Density functional theory | Hubbard model | Hubbard model | Electron-phonon coupling | Electron-phonon coupling | phonons | phonons

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Collecting scrap at Hetton Station Goods Yard Collecting scrap at Hetton Station Goods Yard

Description

Subjects

road | road | roof | roof | sky | sky | abstract | abstract | blur | blur | industry | industry | wheel | wheel | metal | metal | stone | stone | wall | wall | shirt | shirt | yard | yard | standing | standing | fence | fence | buildings | buildings | 1974 | 1974 | interesting | interesting | workers | workers | industrial | industrial | carriage | carriage | unitedkingdom | unitedkingdom | path | path | timber | timber | mark | mark | coat | coat | debris | debris | caps | caps | grain | grain | plate | plate | ground | ground | social | social | number | number | soil | soil | cap | cap | transportation | transportation | signage | signage | bolt | bolt | archives | archives | land | land | letter | letter | vehicle | vehicle | trousers | trousers | unusual | unusual | telegraphpole | telegraphpole | scrap | scrap | railways | railways | crease | crease | flap | flap | attentive | attentive | slope | slope | collecting | collecting | numberplate | numberplate | fascinating | fascinating | digitalimage | digitalimage | sunderland | sunderland | scrapmetal | scrapmetal | citycouncil | citycouncil | 1895 | 1895 | blackandwhitephotograph | blackandwhitephotograph | northeastofengland | northeastofengland | goodsyard | goodsyard | moorsley | moorsley | mid20thcentury | mid20thcentury | eastrainton | eastrainton | hettonlehole | hettonlehole | easingtonlane | easingtonlane | hettondowns | hettondowns | hettonurbandistrictcouncil | hettonurbandistrictcouncil | hettonstationgoodsyard | hettonstationgoodsyard | hettonleholeurbandistrict | hettonleholeurbandistrict | sunderlandmetropolitanborough | sunderlandmetropolitanborough | localgovernmentact1894 | localgovernmentact1894

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Advanced Inorganic Chemistry

Description

Advanced Inorganic Chemistry is designed to provide the knowledge to explain everyday phenomena of inorganic complexes. The student will study the various aspects of their physical and chemical properties and learn how to determine the practical applications that these complexes can have in industrial, analytical, and medicinal chemistry. This free course may be completed online at any time. See course site for detailed overview and learning outcomes. (Chemistry 202)

Subjects

inorganic chemistry | symmetry | molecular orbital theory | transition methods | valence | crystal | ligand | spectra | transition metal | spectroscopy | organometallics | oxidation | reduction | d-metal complexes | catalysis | Physical sciences | F000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.04 Principles of Inorganic Chemistry II (MIT)

Description

This course provides a systematic presentation of the chemical applications of group theory with emphasis on the formal development of the subject and its applications to the physical methods of inorganic chemical compounds. The electronic structure of molecules will be developed. Against this backdrop, the optical, vibrational, and magnetic properties of transition metal complexes are presented and their investigation by the appropriate spectroscopy is described.

Subjects

inorganic chemistry | group theory | transition metal complexes | symmetry element | point group | LCAO | metal metal bonding | vibrational spectroscopy | character tables | sandwich compounds

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Microelectronics Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | 6.152 | 3.155

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Materials Science and Engineering Materials Science and Engineering

Description

In this subject, it is intended that students learn the basics of materials science, the classification of the various families of materials, their properties and applications, and the technology available for the improvement of their properties. In this subject, it is intended that students learn the basics of materials science, the classification of the various families of materials, their properties and applications, and the technology available for the improvement of their properties.

Subjects

materials science | materials science | ceramic materials | ceramic materials | mechanical properties | mechanical properties | families of materials | families of materials | phase diagrams | phase diagrams | materails science and engineering | materails science and engineering | a Mecnica | a Mecnica | functional properties | functional properties | a Metalrgica | a Metalrgica | composite materials | composite materials | structure of materials | structure of materials | a Elctrica | a Elctrica | metallic materials | metallic materials | 2010 | 2010 | polymeric materials | polymeric materials | bonding in solids | bonding in solids | a Electrnica Industrial y Automtica | a Electrnica Industrial y Automtica

License

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/

Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.40J Physical Metallurgy (MIT) 3.40J Physical Metallurgy (MIT)

Description

This course examines how the presence of 1-, 2- and 3D defects and second phases control the mechanical, electromagnetic and chemical behavior of metals and alloys. It considers point, line and interfacial defects in the context of structural transformations including annealing, spinodal decomposition, nucleation, growth, and particle coarsening. In addition, it concentrates on structure-function relationships, and in particular how grain size, interstitial and substitutional solid solutions, and second-phase particles impact mechanical and other properties. Examples include microelectronic circuitry, magnetic memory and drug delivery applications. This course examines how the presence of 1-, 2- and 3D defects and second phases control the mechanical, electromagnetic and chemical behavior of metals and alloys. It considers point, line and interfacial defects in the context of structural transformations including annealing, spinodal decomposition, nucleation, growth, and particle coarsening. In addition, it concentrates on structure-function relationships, and in particular how grain size, interstitial and substitutional solid solutions, and second-phase particles impact mechanical and other properties. Examples include microelectronic circuitry, magnetic memory and drug delivery applications.

Subjects

1- | 2- and 3D defects | 1- | 2- and 3D defects | second phases | second phases | mechanical | electromagnetic and chemical behavior of metals and alloys | mechanical | electromagnetic and chemical behavior of metals and alloys | point | line and interfacial defects | point | line and interfacial defects | structural transformations | structural transformations | annealing | annealing | spinodal decomposition | spinodal decomposition | nucleation | nucleation | growth | growth | particle coarsening | particle coarsening | structure-function relationships | structure-function relationships | grain size | grain size | interstitial and substitutional solid solutions | interstitial and substitutional solid solutions | second-phase particles | second-phase particles | microelectronic circuitry | microelectronic circuitry | magnetic memory | magnetic memory | drug delivery applications | drug delivery applications | 3.40 | 3.40 | 22.71 | 22.71

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.14 Physical Metallurgy (MIT) 3.14 Physical Metallurgy (MIT)

Description

The central point of this course is to provide a physical basis that links the structure of metals with their properties. With this understanding in hand, the concepts of alloy design and microstructural engineering are also discussed, linking processing and thermodynamics to the structure and properties of metals. The central point of this course is to provide a physical basis that links the structure of metals with their properties. With this understanding in hand, the concepts of alloy design and microstructural engineering are also discussed, linking processing and thermodynamics to the structure and properties of metals.

Subjects

processing | structure | and properties of metals and alloys | processing | structure | and properties of metals and alloys | strength | stiffness | and ductility | strength | stiffness | and ductility | crystallography | defects | microstructure | crystallography | defects | microstructure | phase transformations | phase transformations | microstructural evolution | microstructural evolution | alloy thermodynamics and kinetics | alloy thermodynamics and kinetics | structural engineering alloys | structural engineering alloys | steel | steel | aluminum | aluminum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.512 Theory of Solids II (MIT) 8.512 Theory of Solids II (MIT)

Description

This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory. This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory.

Subjects

Linear response theory | Linear response theory | Fluctuation dissipation theorem | Fluctuation dissipation theorem | Scattering experiment | Scattering experiment | f-sum rule | f-sum rule | Physics of disorder | Physics of disorder | Kubo formula for conductivity | Kubo formula for conductivity | Conductance and sensitivity to boundary conditions | Conductance and sensitivity to boundary conditions | Scaling theory of localization | Scaling theory of localization | Mott variable range hopping | Mott variable range hopping | Superconductor | Superconductor | Transverse response | Transverse response | Landau diamagnetism | Landau diamagnetism | Microscopic derivation of London equation | Microscopic derivation of London equation | Effect of disorder | Effect of disorder | Quasiparticles and coherence factors | Quasiparticles and coherence factors | Tunneling and Josephson effect | Tunneling and Josephson effect | Magnetism | Magnetism | Local moment magnetism | Local moment magnetism | exchange interaction | exchange interaction | Ferro- and anti-ferro magnet and spin wave theory | Ferro- and anti-ferro magnet and spin wave theory | Band magnetism | Band magnetism | Stoner theory | Stoner theory | spin density wave | spin density wave | Local moment in metals | Local moment in metals | Friedel sum rule | Friedel sum rule | Friedel-Anderson model | Friedel-Anderson model | Kondo problem | Kondo problem | Fermi liquid theory | Fermi liquid theory | Electron Green?s function | Electron Green?s function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.082 Materials Processing Laboratory (MIT) 3.082 Materials Processing Laboratory (MIT)

Description

Student project teams design and fabricate a materials engineering prototype using appropriate processing technologies (injection molding, thermoforming, investment casting, powder processing, brazing, etc.). Emphasis on teamwork, project management, communications and computer skills, and hands-on work using student and MIT laboratory shops. Goals include developing an understanding of the practical applications of MSE; trade-offs between design, processing and performance; and fabrication of a deliverable prototype. Teams document their progress and final results by means of web pages and weekly oral presentations. Instruction and practice in oral communication provided. Student project teams design and fabricate a materials engineering prototype using appropriate processing technologies (injection molding, thermoforming, investment casting, powder processing, brazing, etc.). Emphasis on teamwork, project management, communications and computer skills, and hands-on work using student and MIT laboratory shops. Goals include developing an understanding of the practical applications of MSE; trade-offs between design, processing and performance; and fabrication of a deliverable prototype. Teams document their progress and final results by means of web pages and weekly oral presentations. Instruction and practice in oral communication provided.

Subjects

investment casting of metals | investment casting of metals | injection molding of polymers | injection molding of polymers | sintering of ceramics | sintering of ceramics | operating processing equipment | operating processing equipment | materials engineering project management | materials engineering project management

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.22 Mechanical Properties of Materials (MIT) 3.22 Mechanical Properties of Materials (MIT)

Description

This course explores the phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples are drawn from structural and functional applications that include a variety of material classes: metals, ceramics, polymers, thin films, composites, and cellular materials. This course explores the phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples are drawn from structural and functional applications that include a variety of material classes: metals, ceramics, polymers, thin films, composites, and cellular materials.

Subjects

metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | bonding | bonding | structure | structure | energy band | energy band | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | optical detectors | optical detectors | sensors | sensors | thin films | thin films | biomaterials | biomaterials | cellular materials | cellular materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.225 Electronic and Mechanical Properties of Materials (MIT) 3.225 Electronic and Mechanical Properties of Materials (MIT)

Description

Electrical, optical, magnetic, and mechanical properties of metals, semiconductors, ceramics, and polymers. Discussion of roles of bonding, structure (crystalline, defect, energy band, and microstructure), and composition in influencing and controlling physical properties. Case studies drawn from a variety of applications including semiconductor diodes, optical detectors, sensors, thin films, biomaterials, composites, and cellular materials. Electrical, optical, magnetic, and mechanical properties of metals, semiconductors, ceramics, and polymers. Discussion of roles of bonding, structure (crystalline, defect, energy band, and microstructure), and composition in influencing and controlling physical properties. Case studies drawn from a variety of applications including semiconductor diodes, optical detectors, sensors, thin films, biomaterials, composites, and cellular materials.

Subjects

metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | bonding | bonding | energy band | energy band | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | optical detectors | optical detectors | sensors | sensors | thin films | thin films | biomaterials | biomaterials | cellular materials | cellular materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.231 Physics of Solids I (MIT) 8.231 Physics of Solids I (MIT)

Description

The topics covered in this course include:Periodic Structure and Symmetry of CrystalsDiffraction, Reciprocal LatticeChemical BondingLattice DynamicsPhononsThermal PropertiesFree Electron GasModel of MetalsBloch Theorem and Band StructureNearly Free Electron ApproximationTight Binding MethodFermi SurfaceSemiconductorsElectronsHolesImpuritiesOptical PropertiesExcitons andMagnetism The topics covered in this course include:Periodic Structure and Symmetry of CrystalsDiffraction, Reciprocal LatticeChemical BondingLattice DynamicsPhononsThermal PropertiesFree Electron GasModel of MetalsBloch Theorem and Band StructureNearly Free Electron ApproximationTight Binding MethodFermi SurfaceSemiconductorsElectronsHolesImpuritiesOptical PropertiesExcitons andMagnetism

Subjects

periodic structure and symmetry of crystals | periodic structure and symmetry of crystals | diffraction | diffraction | reciprocal lattice | reciprocal lattice | chemical bonding | chemical bonding | phonons | phonons | thermal properties | thermal properties | free electron gas | free electron gas | model of metals | model of metals | Bloch theorem and band structure | Bloch theorem and band structure | nearly free electron approximation | nearly free electron approximation | tight binding method | tight binding method | Fermi surface | Fermi surface | semiconductors | semiconductors | electrons | electrons | holes | holes | impurities | impurities | optical properties | optical properties | excitons | excitons | magnetism | magnetism

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.322 Introduction to Sculpture (MIT) 4.322 Introduction to Sculpture (MIT)

Description

This class introduces fundamental issues in sculpture such as site, context, process, psychology and aesthetics of the object, and the object's relation to the body. During the semester Introduction to Sculpture will explore issues of interpretation and audience interaction. As a significant component to this class introductions to a variety of materials and techniques both traditional (wood, metal, plaster) as well as non-traditional (fabric, latex, found objects, rubber, etc.) will be emphasized. This class introduces fundamental issues in sculpture such as site, context, process, psychology and aesthetics of the object, and the object's relation to the body. During the semester Introduction to Sculpture will explore issues of interpretation and audience interaction. As a significant component to this class introductions to a variety of materials and techniques both traditional (wood, metal, plaster) as well as non-traditional (fabric, latex, found objects, rubber, etc.) will be emphasized.

Subjects

fundamental sculpture issues | fundamental sculpture issues | site | site | context | context | process | process | psychology and aesthetics of the object | psychology and aesthetics of the object | the object's relation to the body | the object's relation to the body | fabric | fabric | latex | latex | found objects | found objects | rubber | rubber | wood | wood | metal | metal | plaster | plaster

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.774 Physics of Microfabrication: Front End Processing (MIT) 6.774 Physics of Microfabrication: Front End Processing (MIT)

Description

Includes audio/video content: AV lectures. This course is offered to graduates and focuses on understanding the fundamental principles of the "front-end" processes used in the fabrication of devices for silicon integrated circuits. This includes advanced physical models and practical aspects of major processes, such as oxidation, diffusion, ion implantation, and epitaxy. Other topics covered include: high performance MOS and bipolar devices including ultra-thin gate oxides, implant-damage enhanced diffusion, advanced metrology, and new materials such as Silicon Germanium (SiGe). Includes audio/video content: AV lectures. This course is offered to graduates and focuses on understanding the fundamental principles of the "front-end" processes used in the fabrication of devices for silicon integrated circuits. This includes advanced physical models and practical aspects of major processes, such as oxidation, diffusion, ion implantation, and epitaxy. Other topics covered include: high performance MOS and bipolar devices including ultra-thin gate oxides, implant-damage enhanced diffusion, advanced metrology, and new materials such as Silicon Germanium (SiGe).

Subjects

fabrication processes | fabrication processes | silicon | silicon | integrated circuits | integrated circuits | monolithic integrated circuits | monolithic integrated circuits | physical models | physical models | bulk crystal growth | bulk crystal growth | thermal oxidation | thermal oxidation | solid-state diffusion | solid-state diffusion | ion implantation | ion implantation | epitaxial deposition | epitaxial deposition | chemical vapor deposition | chemical vapor deposition | physical vapor deposition | physical vapor deposition | refractory metal silicides | refractory metal silicides | plasma and reactive ion etching | plasma and reactive ion etching | rapid thermal processing | rapid thermal processing | process modeling | process modeling | process simulation | process simulation | technological limitations | technological limitations | integrated circuit design | integrated circuit design | integrated circuit fabrication | integrated circuit fabrication | device operation | device operation | sige materials | sige materials | processing | processing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.76 Aquatic Chemistry (MIT) 1.76 Aquatic Chemistry (MIT)

Description

This course details the quantitative treatment of chemical processes in aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. It includes a brief review of chemical thermodynamics that is followed by discussion of acid-base, precipitation-dissolution, coordination, and reduction-oxidation reactions. Emphasis is on equilibrium calculations as a tool for understanding the variables that govern the chemical composition of aquatic systems and the fate of inorganic pollutants. This course is offered through The MIT/WHOI Joint Program. The MIT/WHOI Joint Program is one of the premier marine science graduate programs in the world. It draws on the complementary strengths and approaches of two great institutions: the Massachusetts Institute of Technology (MIT) an This course details the quantitative treatment of chemical processes in aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. It includes a brief review of chemical thermodynamics that is followed by discussion of acid-base, precipitation-dissolution, coordination, and reduction-oxidation reactions. Emphasis is on equilibrium calculations as a tool for understanding the variables that govern the chemical composition of aquatic systems and the fate of inorganic pollutants. This course is offered through The MIT/WHOI Joint Program. The MIT/WHOI Joint Program is one of the premier marine science graduate programs in the world. It draws on the complementary strengths and approaches of two great institutions: the Massachusetts Institute of Technology (MIT) an

Subjects

water | water | aquatic | aquatic | seawater | seawater | carbonate | carbonate | trace metals | trace metals | woods hole | woods hole | acid-base | acid-base | complexation | complexation | precipitation-dissolution | precipitation-dissolution | reduction-oxidation | reduction-oxidation | chemical kinetics | chemical kinetics | equilibrium composition | equilibrium composition | approximation techniques | approximation techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata