Searching for microRNA : 15 results found | RSS Feed for this search

1

7.344 RNA Interference: A New Tool for Genetic Analysis and Therapeutics (MIT) 7.344 RNA Interference: A New Tool for Genetic Analysis and Therapeutics (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has a This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has a

Subjects

RNA interference | RNA interference | RNAi | RNAi | RNA | RNA | genetic analysis | genetic analysis | gene therapy | gene therapy | gene products | gene products | gene silencing | gene silencing | gene expression | gene expression | human disease models | human disease models | mRNA | mRNA | genetic interference | genetic interference | short interfering RNA | short interfering RNA | siRNAs | siRNAs | expression vectors | expression vectors | RNA sequences | RNA sequences | nucleotide fragments | nucleotide fragments | microRNA | microRNA | mRNA degradation | mRNA degradation | transgenic mice | transgenic mice | lentivirus | lentivirus | knock-down animals | knock-down animals | tissue specificity | tissue specificity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 An RNA Safari: Exploring the Surprising Diversity of Mammalian Transcriptomes (MIT) 7.343 An RNA Safari: Exploring the Surprising Diversity of Mammalian Transcriptomes (MIT)

Description

The aim of this class is to introduce the exciting and often under appreciated discoveries in RNA biology by exploring the diversity of RNAs—encompassing classical molecules such as ribosomal RNAs (rRNAs), transfer RNAs (tRNAs) and messenger RNAs (mRNAs) as well as newer species, such as microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). For each new class of RNA, we will evaluate the evidence for its existence as well as for its proposed function. Students will develop both a deep understanding of the field of RNA biology and the ability to critically assess new papers in this fast-paced field.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in The aim of this class is to introduce the exciting and often under appreciated discoveries in RNA biology by exploring the diversity of RNAs—encompassing classical molecules such as ribosomal RNAs (rRNAs), transfer RNAs (tRNAs) and messenger RNAs (mRNAs) as well as newer species, such as microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). For each new class of RNA, we will evaluate the evidence for its existence as well as for its proposed function. Students will develop both a deep understanding of the field of RNA biology and the ability to critically assess new papers in this fast-paced field.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in

Subjects

RNA | RNA | ribosomal RNAs (rRNAs) | ribosomal RNAs (rRNAs) | transfer RNAs (tRNAs) | transfer RNAs (tRNAs) | messenger RNAs (mRNAs) | messenger RNAs (mRNAs) | microRNAs (miRNAs) | microRNAs (miRNAs) | long-noncoding RNAs (lncRNAs) | long-noncoding RNAs (lncRNAs) | circular RNAs (circRNAs) | circular RNAs (circRNAs) | high-throughput sequencing | high-throughput sequencing | snRNAs | snRNAs | pre-mRNA splicing | pre-mRNA splicing | snoRNAs | snoRNAs | regulatory molecules | regulatory molecules | siRNA | siRNA | piRNAs | piRNAs | CRISPR-associated RNAs | CRISPR-associated RNAs

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.60 Cell Biology: Structure and Functions of the Nucleus (MIT) 7.60 Cell Biology: Structure and Functions of the Nucleus (MIT)

Description

This course covers the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Topics include Eukaryotic genome structure, function, and expression, processing of RNA, and regulation of the cell cycle. The techniques and logic used to address important problems in nuclear cell biology is emphasized. Lectures cover broad topic areas in nuclear cell biology and class discussions focus on representative papers recently published in the field. This course covers the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Topics include Eukaryotic genome structure, function, and expression, processing of RNA, and regulation of the cell cycle. The techniques and logic used to address important problems in nuclear cell biology is emphasized. Lectures cover broad topic areas in nuclear cell biology and class discussions focus on representative papers recently published in the field.

Subjects

cell biology | cell biology | nucleus | nucleus | biology | biology | nuclear cell biology | nuclear cell biology | DNA replication | DNA replication | DNA repair | DNA repair | DNA | DNA | genome | genome | cell cycle control | cell cycle control | chromatin | chromatin | gene expression | gene expression | replication | replication | transcription | transcription | RNA | RNA | RNA interference | RNA interference | mRNA | mRNA | microRNA | microRNA | RNAi | RNAi

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.345 Non-coding RNAs: Junk or Critical Regulators in Health and Disease? (MIT) 7.345 Non-coding RNAs: Junk or Critical Regulators in Health and Disease? (MIT)

Description

Every time we scientists think that we have dissected the precise biological nature of a process, an incidental finding, a brilliantly designed experiment, or an unexpected result can turn our world upside down. Until recently thought by many to be cellular "junk" because they do not encode proteins, non-coding RNAs are gaining a growing recognition for their roles in the regulation of a wide scope of processes, ranging from embryogenesis and development to cancer and degenerative disorders. The aim of this class is to introduce the diversity of the RNA world, inhabited by microRNAs, lincRNAs, piRNAs, and many others. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in us Every time we scientists think that we have dissected the precise biological nature of a process, an incidental finding, a brilliantly designed experiment, or an unexpected result can turn our world upside down. Until recently thought by many to be cellular "junk" because they do not encode proteins, non-coding RNAs are gaining a growing recognition for their roles in the regulation of a wide scope of processes, ranging from embryogenesis and development to cancer and degenerative disorders. The aim of this class is to introduce the diversity of the RNA world, inhabited by microRNAs, lincRNAs, piRNAs, and many others. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in us

Subjects

Non-coding RNAs | Non-coding RNAs | microRNAs | microRNAs | lincRNAs | lincRNAs | piRNAs | piRNAs | RNA interference | RNA interference | miRNA | miRNA | tumor suppressors and oncogenes | tumor suppressors and oncogenes | RNAi therapeutics | RNAi therapeutics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 Tumor Suppressor Gene p53: How the Guardian of our Genome Prevents Cancer (MIT) 7.344 Tumor Suppressor Gene p53: How the Guardian of our Genome Prevents Cancer (MIT)

Description

Cancer is a leading cause of death worldwide. Cancer involves uncontrolled cell growth, resistance to cell death, failure to differentiate into a particular cell type, and increased cellular motility. A family of gate-keeper genes, known as tumor suppressor genes, plays important roles in preventing the initiation and progression of cancer. Among these, p53 is the most famous. Because of its essential role in maintaining genomic integrity, p53 is often called the guardian of the genome. During this course, we will study how p53 serves as a pivotal tumor suppressor gene in preventing cancer.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to disc Cancer is a leading cause of death worldwide. Cancer involves uncontrolled cell growth, resistance to cell death, failure to differentiate into a particular cell type, and increased cellular motility. A family of gate-keeper genes, known as tumor suppressor genes, plays important roles in preventing the initiation and progression of cancer. Among these, p53 is the most famous. Because of its essential role in maintaining genomic integrity, p53 is often called the guardian of the genome. During this course, we will study how p53 serves as a pivotal tumor suppressor gene in preventing cancer.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to disc

Subjects

tumor suppressor gene | tumor suppressor gene | p53 | p53 | p53 protein | p53 protein | cancer | cancer | cell-growth signals | cell-growth signals | cell cycle regulation | cell cycle regulation | DNA damage | DNA damage | DNA repair | DNA repair | programmed cell death | programmed cell death | apoptosis | apoptosis | genome integrity | genome integrity | oncogenes | oncogenes | p53 mutations | p53 mutations | mouse cancer models | mouse cancer models | Mdm2 | Mdm2 | microRNA | microRNA

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.60 Cell Biology: Structure and Functions of the Nucleus (MIT) 7.60 Cell Biology: Structure and Functions of the Nucleus (MIT)

Description

The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression. The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.

Subjects

cell biology | cell biology | nucleus | nucleus | biology | biology | nuclear cell biology | nuclear cell biology | DNA replication | DNA replication | DNA repair | DNA repair | DNA | DNA | genome | genome | cell cycle control | cell cycle control | transcriptional regulation | transcriptional regulation | gene expression | gene expression | chromatin | chromatin | chromosomes | chromosomes | replication | replication | transcription | transcription | RNA | RNA | RNA interference | RNA interference | mRNA | mRNA | microRNA | microRNA | RNAi | RNAi

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 When Development Goes Awry: How Cancer Co-opts Mechanisms of Embryogensis (MIT) 7.343 When Development Goes Awry: How Cancer Co-opts Mechanisms of Embryogensis (MIT)

Description

During this course, we will study the similarities between cancer and normal development to understand how tumors co-opt normal developmental processes to facilitate cancer initiation, maintenance and progression. We will examine critical signaling pathways that govern these processes and, importantly, how some of these pathways hold promise as therapeutic targets for cancer treatment. We will discuss how future treatments might be personalized to target cancer cells in specific patients. We will also consider examples of newly-approved drugs that have dramatically helped patients combat this devastating disease. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary res During this course, we will study the similarities between cancer and normal development to understand how tumors co-opt normal developmental processes to facilitate cancer initiation, maintenance and progression. We will examine critical signaling pathways that govern these processes and, importantly, how some of these pathways hold promise as therapeutic targets for cancer treatment. We will discuss how future treatments might be personalized to target cancer cells in specific patients. We will also consider examples of newly-approved drugs that have dramatically helped patients combat this devastating disease. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary res

Subjects

cancer | cancer | embryogenesis | embryogenesis | sonic hedgehog | sonic hedgehog | tumor | tumor | signaling | signaling | proto-oncogene | proto-oncogene | Kras | Kras | apoptosis | apoptosis | self-renewal | self-renewal | regeneration | regeneration | angiogenesis | angiogenesis | VEGF | VEGF | tumorigenesis | tumorigenesis | metastasis | metastasis | microRNA | microRNA

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 The RNA Revolution: At the Frontiers of Cell Biology and Molecular Medicine (MIT)

Description

In this course, we will investigate the diverse types and functions of different RNA species, with a focus on "non-coding RNAs," i.e. those that do not directly encode proteins. The course will convey both the exciting discoveries in and frontiers of RNA research that are propelling our understanding of cell biology as well as the intellectual and experimental approaches responsible.The molecular biology revolution firmly established the role of DNA as the primary carrier of genetic information and proteins as the primary effector molecules of the cell. The intermediate between DNA and proteins is RNA, which initially was regarded as the "molecule in the middle" of the central dogma. This view has been transformed over the past two decades, as RNA has become recogn

Subjects

RNA | non-coding RNAs | ribosomal RNA | catalytic | circular RNA | long non-coding RNA | RNAi | RNA therapeutics | microRNAs | CRISPR/Cas9 | miRNAs | siRNA

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.60 Cell Biology: Structure and Functions of the Nucleus (MIT)

Description

This course covers the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Topics include Eukaryotic genome structure, function, and expression, processing of RNA, and regulation of the cell cycle. The techniques and logic used to address important problems in nuclear cell biology is emphasized. Lectures cover broad topic areas in nuclear cell biology and class discussions focus on representative papers recently published in the field.

Subjects

cell biology | nucleus | biology | nuclear cell biology | DNA replication | DNA repair | DNA | genome | cell cycle control | chromatin | gene expression | replication | transcription | RNA | RNA interference | mRNA | microRNA | RNAi

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 An RNA Safari: Exploring the Surprising Diversity of Mammalian Transcriptomes (MIT)

Description

The aim of this class is to introduce the exciting and often under appreciated discoveries in RNA biology by exploring the diversity of RNAs—encompassing classical molecules such as ribosomal RNAs (rRNAs), transfer RNAs (tRNAs) and messenger RNAs (mRNAs) as well as newer species, such as microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). For each new class of RNA, we will evaluate the evidence for its existence as well as for its proposed function. Students will develop both a deep understanding of the field of RNA biology and the ability to critically assess new papers in this fast-paced field.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in

Subjects

RNA | ribosomal RNAs (rRNAs) | transfer RNAs (tRNAs) | messenger RNAs (mRNAs) | microRNAs (miRNAs) | long-noncoding RNAs (lncRNAs) | circular RNAs (circRNAs) | high-throughput sequencing | snRNAs | pre-mRNA splicing | snoRNAs | regulatory molecules | siRNA | piRNAs | CRISPR-associated RNAs

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.345 Non-coding RNAs: Junk or Critical Regulators in Health and Disease? (MIT)

Description

Every time we scientists think that we have dissected the precise biological nature of a process, an incidental finding, a brilliantly designed experiment, or an unexpected result can turn our world upside down. Until recently thought by many to be cellular "junk" because they do not encode proteins, non-coding RNAs are gaining a growing recognition for their roles in the regulation of a wide scope of processes, ranging from embryogenesis and development to cancer and degenerative disorders. The aim of this class is to introduce the diversity of the RNA world, inhabited by microRNAs, lincRNAs, piRNAs, and many others. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in us

Subjects

Non-coding RNAs | microRNAs | lincRNAs | piRNAs | RNA interference | miRNA | tumor suppressors and oncogenes | RNAi therapeutics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 Tumor Suppressor Gene p53: How the Guardian of our Genome Prevents Cancer (MIT)

Description

Cancer is a leading cause of death worldwide. Cancer involves uncontrolled cell growth, resistance to cell death, failure to differentiate into a particular cell type, and increased cellular motility. A family of gate-keeper genes, known as tumor suppressor genes, plays important roles in preventing the initiation and progression of cancer. Among these, p53 is the most famous. Because of its essential role in maintaining genomic integrity, p53 is often called the guardian of the genome. During this course, we will study how p53 serves as a pivotal tumor suppressor gene in preventing cancer.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to disc

Subjects

tumor suppressor gene | p53 | p53 protein | cancer | cell-growth signals | cell cycle regulation | DNA damage | DNA repair | programmed cell death | apoptosis | genome integrity | oncogenes | p53 mutations | mouse cancer models | Mdm2 | microRNA

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.60 Cell Biology: Structure and Functions of the Nucleus (MIT)

Description

The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.

Subjects

cell biology | nucleus | biology | nuclear cell biology | DNA replication | DNA repair | DNA | genome | cell cycle control | transcriptional regulation | gene expression | chromatin | chromosomes | replication | transcription | RNA | RNA interference | mRNA | microRNA | RNAi

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 When Development Goes Awry: How Cancer Co-opts Mechanisms of Embryogensis (MIT)

Description

During this course, we will study the similarities between cancer and normal development to understand how tumors co-opt normal developmental processes to facilitate cancer initiation, maintenance and progression. We will examine critical signaling pathways that govern these processes and, importantly, how some of these pathways hold promise as therapeutic targets for cancer treatment. We will discuss how future treatments might be personalized to target cancer cells in specific patients. We will also consider examples of newly-approved drugs that have dramatically helped patients combat this devastating disease. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary res

Subjects

cancer | embryogenesis | sonic hedgehog | tumor | signaling | proto-oncogene | Kras | apoptosis | self-renewal | regeneration | angiogenesis | VEGF | tumorigenesis | metastasis | microRNA

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 RNA Interference: A New Tool for Genetic Analysis and Therapeutics (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has a

Subjects

RNA interference | RNAi | RNA | genetic analysis | gene therapy | gene products | gene silencing | gene expression | human disease models | mRNA | genetic interference | short interfering RNA | siRNAs | expression vectors | RNA sequences | nucleotide fragments | microRNA | mRNA degradation | transgenic mice | lentivirus | knock-down animals | tissue specificity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata