Searching for model : 1958 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

Readme file for Database Systems

Description

This readme file contains details of links to all the Database Systems module's material held on Jorum and information about the module as well.

Subjects

database lecture | databases lecture | database system lecture | er models lecture | cardinality lecture | determinancy lecture | anomalies lecture | advanced database design reading material | client server lecture | uml lecture | unified modelling language lecture | ms sql server lecture | transaction lecture | pl/sql lecture | security lecture | object-relational databases | sql example | entity-relationship model lecture | entity relationship models lecture | object modeling lecture | entity-relationship models lecture | entity-relationship models | entity-relationship model | entity relationship models | entity relationship model | er models | er model | database systems | database system | databases | database | cardinality | determinancy | normalisation | normalization | anomalies | normalisation-anomalies | normalisation anomalies | normalization-anomalies | normalization anomalies | normalization anomaly | normalization-anomaly | normalisation 1st normal form | 1st normal form | first normal form | normalization 1st normal form | advanced database design | advanced databases design | advanced database | advanced databases | database design | unified modelling language | object modelling | ms sql server | pl/sql | distributed databases | security | database systems lecture | er model lecture | entity relationship model lecture | normalisation lecture | normalization lecture | normalisation-anomalies lecture | normalisation anomalies lecture | normalization-anomalies lecture | normalization anomalies lecture | normalization-anomaly lecture | normalization anomaly lecture | normalisation 1st normal form lecture | 1st normal form lecture | first normal form lecture | normalization 1st normal form lecture | advanced databases design reading material | advanced database reading material | advanced databases reading material | database design reading material | database systems reading material | database system reading material | databases reading material | database reading material | advanced database design lecture | advanced databases design lecture | advanced database lecture | advanced databases lecture | database design lecture | object modelling lecture | distributed databases lecture | object-relational databases lecture | advanced database design example | advanced databases design example | advanced database example | advanced databases example | database design example | database systems example | database system example | databases example | database example | uml | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.875 Applications of System Dynamics (MIT) 15.875 Applications of System Dynamics (MIT)

Description

15.875 is a project-based course that explores how organizations can use system dynamics to achieve important goals. In small groups, students learn modeling and consulting skills by working on a term-long project with real-life managers. A diverse set of businesses and organizations sponsor class projects, from start-ups to the Fortune 500. The course focuses on gaining practical insight from the system dynamics process, and appeals to people interested in system dynamics, consulting, or managerial policy-making. 15.875 is a project-based course that explores how organizations can use system dynamics to achieve important goals. In small groups, students learn modeling and consulting skills by working on a term-long project with real-life managers. A diverse set of businesses and organizations sponsor class projects, from start-ups to the Fortune 500. The course focuses on gaining practical insight from the system dynamics process, and appeals to people interested in system dynamics, consulting, or managerial policy-making.

Subjects

system dynamics process; modeling; business consulting; managerial policy-making; team project; standard method; process consultation; system consultation; system processes; modeling loops; analyzing loops; diffusion model; problem solving; reference modes; momentum policies; causal loop; client consultations; client consulting; molecules of structure; system dynamics models | system dynamics process; modeling; business consulting; managerial policy-making; team project; standard method; process consultation; system consultation; system processes; modeling loops; analyzing loops; diffusion model; problem solving; reference modes; momentum policies; causal loop; client consultations; client consulting; molecules of structure; system dynamics models | system dynamics process | system dynamics process | modeling | modeling | business consulting | business consulting | managerial policy-making | managerial policy-making | team project | team project | standard method | standard method | process consultation | process consultation | system consultation | system consultation | system processes | system processes | modeling loops | modeling loops | analyzing loops | analyzing loops | diffusion model | diffusion model | problem solving | problem solving | reference modes | reference modes | momentum policies | momentum policies | causal loop | causal loop | client consultations | client consultations | client consulting | client consulting | molecules of structure | molecules of structure | system dynamics models | system dynamics models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Database Systems - Entity-Relationship Models

Description

This zip file contains a Powerpoint lecture and audio files for the "Entity-Relationship Models" topic in the Database Systems module.

Subjects

ukoer | database lecture | databases lecture | database system lecture | er models lecture | entity-relationship model lecture | entity relationship models lecture | entity-relationship models lecture | entity-relationship models | entity-relationship model | entity relationship models | entity relationship model | er models | er model | database systems | database system | databases | database | database systems lecture | er model lecture | entity relationship model lecture | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.591J Systems Biology (MIT) 8.591J Systems Biology (MIT)

Description

This course introduces the mathematical modeling techniques needed to address key questions in modern biology. An overview of modeling techniques in molecular biology and genetics, cell biology and developmental biology is covered. Key experiments that validate mathematical models are also discussed, as well as molecular, cellular, and developmental systems biology, bacterial chemotaxis, genetic oscillators, control theory and genetic networks, and gradient sensing systems. Additional specific topics include: constructing and modeling of genetic networks, lambda phage as a genetic switch, synthetic genetic switches, circadian rhythms, reaction diffusion equations, local activation and global inhibition models, center finding networks, general pattern formation models, modeling cell-cell co This course introduces the mathematical modeling techniques needed to address key questions in modern biology. An overview of modeling techniques in molecular biology and genetics, cell biology and developmental biology is covered. Key experiments that validate mathematical models are also discussed, as well as molecular, cellular, and developmental systems biology, bacterial chemotaxis, genetic oscillators, control theory and genetic networks, and gradient sensing systems. Additional specific topics include: constructing and modeling of genetic networks, lambda phage as a genetic switch, synthetic genetic switches, circadian rhythms, reaction diffusion equations, local activation and global inhibition models, center finding networks, general pattern formation models, modeling cell-cell co

Subjects

molecular systems biology | molecular systems biology | constructing and modeling of genetic networks | constructing and modeling of genetic networks | control theory and genetic networks | control theory and genetic networks | ambda phage as a genetic switch | ambda phage as a genetic switch | synthetic genetic switches | synthetic genetic switches | bacterial chemotaxis | bacterial chemotaxis | genetic oscillators | genetic oscillators | circadian rhythms | circadian rhythms | cellular systems biology | cellular systems biology | reaction diffusion equations | reaction diffusion equations | local activation and global inhibition models | local activation and global inhibition models | gradient sensing systems | gradient sensing systems | center finding networks | center finding networks | developmental systems biology | developmental systems biology | general pattern formation models | general pattern formation models | modeling cell-cell communication | modeling cell-cell communication | quorum sensing | quorum sensing | models for Drosophilia development | models for Drosophilia development | 8.591 | 8.591 | 7.81 | 7.81

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.675 The Development of Object and Face Recognition (MIT) 9.675 The Development of Object and Face Recognition (MIT)

Description

This course takes a 'back to the beginning' view that aims to better understand the end result. What might be the developmental processes that lead to the organization of 'booming, buzzing confusions' into coherent visual objects? This course examines key experimental results and computational proposals pertinent to the discovery of objects in complex visual inputs. The structure of the course is designed to get students to learn and to focus on the genre of study as a whole; to get a feel for how science is done in this field. This course takes a 'back to the beginning' view that aims to better understand the end result. What might be the developmental processes that lead to the organization of 'booming, buzzing confusions' into coherent visual objects? This course examines key experimental results and computational proposals pertinent to the discovery of objects in complex visual inputs. The structure of the course is designed to get students to learn and to focus on the genre of study as a whole; to get a feel for how science is done in this field.

Subjects

computational theories of human cognition | computational theories of human cognition | principles of inductive learning and inference | principles of inductive learning and inference | representation of knowledge | representation of knowledge | computational frameworks | computational frameworks | Bayesian models | Bayesian models | hierarchical Bayesian models | hierarchical Bayesian models | probabilistic graphical models | probabilistic graphical models | nonparametric statistical models | nonparametric statistical models | Bayesian Occam's razor | Bayesian Occam's razor | sampling algorithms for approximate learning and inference | sampling algorithms for approximate learning and inference | probabilistic models defined over structured representations such as first-order logic | probabilistic models defined over structured representations such as first-order logic | grammars | grammars | relational schemas | relational schemas | core aspects of cognition | core aspects of cognition | concept learning | concept learning | concept categorization | concept categorization | causal reasoning | causal reasoning | theory formation | theory formation | language acquisition | language acquisition | social inference | social inference

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.950 Atmospheric and Oceanic Modeling (MIT) 12.950 Atmospheric and Oceanic Modeling (MIT)

Description

The numerical methods, formulation and parameterizations used in models of the circulation of the atmosphere and ocean will be described in detail. Widely used numerical methods will be the focus but we will also review emerging concepts and new methods. The numerics underlying a hierarchy of models will be discussed, ranging from simple GFD models to the high-end GCMs. In the context of ocean GCMs, we will describe parameterization of geostrophic eddies, mixing and the surface and bottom boundary layers. In the atmosphere, we will review parameterizations of convection and large scale condensation, the planetary boundary layer and radiative transfer. The numerical methods, formulation and parameterizations used in models of the circulation of the atmosphere and ocean will be described in detail. Widely used numerical methods will be the focus but we will also review emerging concepts and new methods. The numerics underlying a hierarchy of models will be discussed, ranging from simple GFD models to the high-end GCMs. In the context of ocean GCMs, we will describe parameterization of geostrophic eddies, mixing and the surface and bottom boundary layers. In the atmosphere, we will review parameterizations of convection and large scale condensation, the planetary boundary layer and radiative transfer.

Subjects

numerical methods | numerical methods | formulation | formulation | parameterizations | parameterizations | models of the circulation of the atmosphere and ocean | models of the circulation of the atmosphere and ocean | numerics underlying a hierarchy of models | numerics underlying a hierarchy of models | simple GFD models | simple GFD models | high-end GCMs | high-end GCMs | ocean GCMs | ocean GCMs | parameterization of geostrophic eddies | parameterization of geostrophic eddies | mixing | mixing | surface and bottom boundary layers | surface and bottom boundary layers | atmosphere | atmosphere | parameterizations of convection | parameterizations of convection | large scale condensation | large scale condensation | planetary boundary layer | planetary boundary layer | radiative transfer | radiative transfer | finite difference method | finite difference method | Spatial discretization | Spatial discretization | numerical dispersion | numerical dispersion | Series expansion | Series expansion | Time-stepping | Time-stepping | Space-time discretization | Space-time discretization | Shallow water dynamics | Shallow water dynamics | Barotropic models | Barotropic models | Quasi-geostrophic equations | Quasi-geostrophic equations | Quasi-geostrophic models | Quasi-geostrophic models | Eddy parameterization | Eddy parameterization | Vertical coordinates | Vertical coordinates | primitive equations | primitive equations | Boundary layer parameterizations | Boundary layer parameterizations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Convair 660 model 127-67-7 Convair 660 model 127-67-7

Description

Subjects

airplane | airplane | model | model | aircraft | aircraft | aviation | aviation | rollsroyce | rollsroyce | airliners | airliners | convair | convair | modelairplane | modelairplane | generaldynamics | generaldynamics | airplanemodel | airplanemodel | modelaircraft | modelaircraft | rollsroycetrent | rollsroycetrent | aircraftmodel | aircraftmodel | rrtrent | rrtrent | cv660 | cv660 | convair660 | convair660 | convaircv660 | convaircv660

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Convair 660 model 127-67-6 Convair 660 model 127-67-6

Description

Subjects

airplane | airplane | model | model | aircraft | aircraft | aviation | aviation | rollsroyce | rollsroyce | combi | combi | airliners | airliners | convair | convair | modelairplane | modelairplane | generaldynamics | generaldynamics | airplanemodel | airplanemodel | modelaircraft | modelaircraft | rollsroycetrent | rollsroycetrent | aircraftmodel | aircraftmodel | rrtrent | rrtrent | cv660 | cv660 | convair660 | convair660 | convaircv660 | convaircv660

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Convair 660 model 127-67-5 Convair 660 model 127-67-5

Description

Subjects

airplane | airplane | model | model | aircraft | aircraft | aviation | aviation | rollsroyce | rollsroyce | combi | combi | airliners | airliners | convair | convair | modelairplane | modelairplane | generaldynamics | generaldynamics | airplanemodel | airplanemodel | modelaircraft | modelaircraft | rollsroycetrent | rollsroycetrent | aircraftmodel | aircraftmodel | rrtrent | rrtrent | cv660 | cv660 | convair660 | convair660 | convaircv660 | convaircv660

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Convair 660 model 127-67-4 Convair 660 model 127-67-4

Description

Subjects

airplane | airplane | model | model | aircraft | aircraft | aviation | aviation | rollsroyce | rollsroyce | combi | combi | airliners | airliners | convair | convair | modelairplane | modelairplane | generaldynamics | generaldynamics | airplanemodel | airplanemodel | modelaircraft | modelaircraft | rollsroycetrent | rollsroycetrent | aircraftmodel | aircraftmodel | rrtrent | rrtrent | cv660 | cv660 | convair660 | convair660 | convaircv660 | convaircv660

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Convair 660 model 127-67-3 Convair 660 model 127-67-3

Description

Subjects

airplane | airplane | model | model | aircraft | aircraft | aviation | aviation | rollsroyce | rollsroyce | airliners | airliners | convair | convair | modelairplane | modelairplane | generaldynamics | generaldynamics | airplanemodel | airplanemodel | modelaircraft | modelaircraft | rollsroycetrent | rollsroycetrent | aircraftmodel | aircraftmodel | rrtrent | rrtrent | cv660 | cv660 | convair660 | convair660 | convaircv660 | convaircv660

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Convair 660 model 127-67-2 Convair 660 model 127-67-2

Description

Subjects

airplane | airplane | model | model | aircraft | aircraft | aviation | aviation | rollsroyce | rollsroyce | airliners | airliners | convair | convair | modelairplane | modelairplane | generaldynamics | generaldynamics | airplanemodel | airplanemodel | modelaircraft | modelaircraft | rollsroycetrent | rollsroycetrent | aircraftmodel | aircraftmodel | rrtrent | rrtrent | cv660 | cv660 | convair660 | convair660 | convaircv660 | convaircv660

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Convair 660 model 127-67-1 Convair 660 model 127-67-1

Description

Subjects

airplane | airplane | model | model | aircraft | aircraft | aviation | aviation | rollsroyce | rollsroyce | airliners | airliners | convair | convair | modelairplane | modelairplane | generaldynamics | generaldynamics | airplanemodel | airplanemodel | modelaircraft | modelaircraft | rollsroycetrent | rollsroycetrent | aircraftmodel | aircraftmodel | rrtrent | rrtrent | cv660 | cv660 | convair660 | convair660 | convaircv660 | convaircv660

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Readme file for Web Design and Objects

Description

This readme file contains details of links to all the Web Design and Objects module's material held on Jorum and information about the module as well.

Subjects

ukoer | data oriented dynamic design methods article | data oriented dynamic design methods reading material | data oriented dynamic design methods | data oriented dynamic web design method article | data oriented dynamic web design method reading material | data oriented dynamic web design method | design method article | design method lecture | design method reading material | design method | design methods article | design methods lecture | design methods reading material | design methods | dynamic design method article | dynamic design method lecture | dynamic design methods reading material | dynamic design methods | hypermedia design methods reading material | hypermedia design reading material | hypermedia systems reading material | hypertext application types reading material | live projects reading material | modelling framework reading material | object oriented dynamic design methods and consensus | object oriented dynamic web design method lecture | object oriented dynamic web design method reading material | object oriented dynamic web design method | process/event oriented dynamic design methods lecture | process/event oriented dynamic design methods | robustness diagrams reading material | simple web method website | static web method reading material | static web method task guide | static web method website | static web method | static web methods reading material | static web methods task guide | static web methods website | static web methods | structured detail website | structured overview lecture | structured techniques external website | structured techniques lecture | structured techniques reading material | structured techniques | swm analysis website | swm design detail | systems analysis and design practical | systems analysis and design reading material | systems analysis and design task guide | systems analysis and design website | systems analysis and design | systems analysis reading material | systems analysis task guide | uml lecture | uml reading material | web article | web design and objects article | web design and objects external website | web design and objects introduction lecture | web design and objects introduction reading material | web design and objects introduction task guide | web design and objects introduction website | web design and objects introduction | web design and objects lecture | web design and objects reading material | web design and objects task guide | web design and objects website | web design and objects | web design article | web design external website | web design lecture | web design practical | web design reading material | web design task guide | web design website | web design | web engineering reading material | web external website | web lecture | web method reading material | web method task guide | web method website | web method | web methods reading material | web methods task guide | web methods website | web methods | web object article | web object external website | web object lecture | web object practical | web object reading material | web object task guide | web object website | web object | web objects article | web objects external website | web objects lecture | web objects practical | web objects reading material | web objects task guide | web objects website | web objects | web practical | web reading material | web task guide | web website | web | webml lecture | webml reading material | webml website | webratio website | g530 article | g530 external website | g530 lecture | g530 practical | g530 reading material | g530 task guide | g530 website | g530 | web design and objects practical | web modeling language external website | web modeling language lecture | web modeling language reading material | web modeling language | web modelling language external website | web modelling language lecture | web modelling language reading material | web modelling language | webml external website | webml | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The Future of Journalism The Future of Journalism

Description

John Lloyd, Director of Journalism, Reuters Institute, delivers a lecture on the future of journalism. John Lloyd, Director of Journalism, Reuters Institute, delivers a lecture on the future of journalism.

Subjects

models | models | newspaper | newspaper | model | model | journalism | journalism | business | business | models | newspaper | model | journalism | business | 2010-10-13 | models | newspaper | model | journalism | business | 2010-10-13

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129029/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.831 User Interface Design and Implementation (MIT) 6.831 User Interface Design and Implementation (MIT)

Description

6.831 introduces the principles of user interface development, focusing on three key areas: Design: How to design good user interfaces, starting with human capabilities (including the human information processor model, perception, motor skills, color, attention, and errors) and using those capabilities to drive design techniques: task analysis, user-centered design, iterative design, usability guidelines, interaction styles, and graphic design principles. Implementation: Techniques for building user interfaces, including low-fidelity prototypes, Wizard of Oz, and other prototyping tools; input models, output models, model-view-controller, layout, constraints, and toolkits. Evaluation: Techniques for evaluating and measuring interface usability, including heuristic evaluation, predicti 6.831 introduces the principles of user interface development, focusing on three key areas: Design: How to design good user interfaces, starting with human capabilities (including the human information processor model, perception, motor skills, color, attention, and errors) and using those capabilities to drive design techniques: task analysis, user-centered design, iterative design, usability guidelines, interaction styles, and graphic design principles. Implementation: Techniques for building user interfaces, including low-fidelity prototypes, Wizard of Oz, and other prototyping tools; input models, output models, model-view-controller, layout, constraints, and toolkits. Evaluation: Techniques for evaluating and measuring interface usability, including heuristic evaluation, predicti

Subjects

human-computer interfaces | human-computer interfaces | human capabilities | human capabilities | human information processor | human information processor | perception | perception | Fitts's Law | Fitts's Law | color | color | hearing | hearing | task analysis | task analysis | user-centered design | user-centered design | iterative design | iterative design | low-fidelity prototyping | low-fidelity prototyping | heuristic evaluation | heuristic evaluation | keystroke-level models | keystroke-level models | formative evaluation | formative evaluation | input models | input models | output models | output models | model-view-controller | model-view-controller | toolkits | toolkits | programming project | programming project | GUI | GUI | Java | Java

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.812J Collective Choice I (MIT) 17.812J Collective Choice I (MIT)

Description

This is an applied theory course covering topics in the political economy of democratic countries. This course examines political institutions from a rational choice perspective. The now burgeoning rational choice literature on legislatures, bureaucracies, courts, and elections constitutes the chief focus. Some focus will be placed on institutions from a comparative and/or international perspective. This is an applied theory course covering topics in the political economy of democratic countries. This course examines political institutions from a rational choice perspective. The now burgeoning rational choice literature on legislatures, bureaucracies, courts, and elections constitutes the chief focus. Some focus will be placed on institutions from a comparative and/or international perspective.

Subjects

political economy | political economy | rational choice | rational choice | legislature | legislature | bureaucracy | bureaucracy | court | court | and elections | and elections | electoral competition | electoral competition | comparative | comparative | international | international | public goods | public goods | government | government | taxation | taxation | income redistribution | income redistribution | macroeconomic policy | macroeconomic policy | multiparty competition | multiparty competition | electoral system | electoral system | voter | voter | agency models | agency models | models of political parties | models of political parties | point-valued solution | point-valued solution | set-valued solution | set-valued solution | probabilistic voting models | probabilistic voting models | structure-induced equilibrium models | structure-induced equilibrium models | vote-buying | vote-buying | vote-trading | vote-trading | Colonel Blotto | Colonel Blotto | minorities | minorities | interest groups | interest groups | lobbying | lobbying | bargaining | bargaining | coalitions | coalitions | government stability | government stability | informational theory | informational theory | distributive theory | distributive theory | legislative-executive relations | legislative-executive relations | representative democracy | representative democracy | direct democracy | direct democracy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.225J Transportation Flow Systems (MIT) 1.225J Transportation Flow Systems (MIT)

Description

Design, operation, and management of traffic flows over complex transportation networks are the foci of this course. It covers two major topics: traffic flow modeling and traffic flow operations. Sub-topics include deterministic and probabilistic models, elements of queuing theory, and traffic assignment. Concepts are illustrated through various applications and case studies. This is a half-term subject offered during the second half of the semester. Design, operation, and management of traffic flows over complex transportation networks are the foci of this course. It covers two major topics: traffic flow modeling and traffic flow operations. Sub-topics include deterministic and probabilistic models, elements of queuing theory, and traffic assignment. Concepts are illustrated through various applications and case studies. This is a half-term subject offered during the second half of the semester.

Subjects

transportation | transportation | transportation flow systems | transportation flow systems | traffic | traffic | traffic flow | traffic flow | networks | networks | transportation networks | transportation networks | flow modeling | flow modeling | flow operations | flow operations | deteministic models | deteministic models | probabilistic models | probabilistic models | queuing theory | queuing theory | queues | queues | traffic assignment | traffic assignment | case studies | case studies | cumulative plots | cumulative plots | airport runway capacity | airport runway capacity | runway capacity | runway capacity | road traffic | road traffic | shortest paths | shortest paths | optimizations | optimizations | highway control | highway control | ramp metering | ramp metering | simulation models | simulation models | isolated signals | isolated signals | operations | operations | operational problems | operational problems | air traffic operation | air traffic operation | air | air | road | road | component | component | 1.225 | 1.225 | ESD.205 | ESD.205

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.160 Identification, Estimation, and Learning (MIT) 2.160 Identification, Estimation, and Learning (MIT)

Description

This course provides a broad theoretical basis for system identification, estimation, and learning. Students will study least squares estimation and its convergence properties, Kalman filters, noise dynamics and system representation, function approximation theory, neural nets, radial basis functions, wavelets, Volterra expansions, informative data sets, persistent excitation, asymptotic variance, central limit theorems, model structure selection, system order estimate, maximum likelihood, unbiased estimates, Cramer-Rao lower bound, Kullback-Leibler information distance, Akaike's information criterion, experiment design, and model validation. This course provides a broad theoretical basis for system identification, estimation, and learning. Students will study least squares estimation and its convergence properties, Kalman filters, noise dynamics and system representation, function approximation theory, neural nets, radial basis functions, wavelets, Volterra expansions, informative data sets, persistent excitation, asymptotic variance, central limit theorems, model structure selection, system order estimate, maximum likelihood, unbiased estimates, Cramer-Rao lower bound, Kullback-Leibler information distance, Akaike's information criterion, experiment design, and model validation.

Subjects

system identification; estimation; least squares estimation; Kalman filter; noise dynamics; system representation; function approximation theory; neural nets; radial basis functions; wavelets; volterra expansions; informative data sets; persistent excitation; asymptotic variance; central limit theorem; model structure selection; system order estimate; maximum likelihood; unbiased estimates; Cramer-Rao lower bound; Kullback-Leibler information distance; Akaike?s information criterion; experiment design; model validation. | system identification; estimation; least squares estimation; Kalman filter; noise dynamics; system representation; function approximation theory; neural nets; radial basis functions; wavelets; volterra expansions; informative data sets; persistent excitation; asymptotic variance; central limit theorem; model structure selection; system order estimate; maximum likelihood; unbiased estimates; Cramer-Rao lower bound; Kullback-Leibler information distance; Akaike?s information criterion; experiment design; model validation. | system identification | system identification | estimation | estimation | least squares estimation | least squares estimation | Kalman filter | Kalman filter | noise dynamics | noise dynamics | system representation | system representation | function approximation theory | function approximation theory | neural nets | neural nets | radial basis functions | radial basis functions | wavelets | wavelets | volterra expansions | volterra expansions | informative data sets | informative data sets | persistent excitation | persistent excitation | asymptotic variance | asymptotic variance | central limit theorem | central limit theorem | model structure selection | model structure selection | system order estimate | system order estimate | maximum likelihood | maximum likelihood | unbiased estimates | unbiased estimates | Cramer-Rao lower bound | Cramer-Rao lower bound | Kullback-Leibler information distance | Kullback-Leibler information distance | Akaike?s information criterion | Akaike?s information criterion | experiment design | experiment design | model validation | model validation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.435 System Identification (MIT) 6.435 System Identification (MIT)

Description

This course is offered to graduates and includes topics such as mathematical models of systems from observations of their behavior; time series, state-space, and input-output models; model structures, parametrization, and identifiability; non-parametric methods; prediction error methods for parameter estimation, convergence, consistency, and asymptotic distribution; relations to maximum likelihood estimation; recursive estimation; relation to Kalman filters; structure determination; order estimation; Akaike criterion; bounded but unknown noise model; and robustness and practical issues. This course is offered to graduates and includes topics such as mathematical models of systems from observations of their behavior; time series, state-space, and input-output models; model structures, parametrization, and identifiability; non-parametric methods; prediction error methods for parameter estimation, convergence, consistency, and asymptotic distribution; relations to maximum likelihood estimation; recursive estimation; relation to Kalman filters; structure determination; order estimation; Akaike criterion; bounded but unknown noise model; and robustness and practical issues.

Subjects

mathematical models | mathematical models | time series | time series | state-space | state-space | input-output models | input-output models | model structures | model structures | parametrization | parametrization | identifiability | identifiability | non-parametric methods | non-parametric methods | prediction error | prediction error | parameter estimation | parameter estimation | convergence | convergence | consistency | consistency | andasymptotic distribution | andasymptotic distribution | maximum likelihood estimation | maximum likelihood estimation | recursive estimation | recursive estimation | Kalman filters | Kalman filters | structure determination | structure determination | order estimation | order estimation | Akaike criterion | Akaike criterion | bounded noise models | bounded noise models | robustness | robustness

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.780 Semiconductor Manufacturing (MIT) 6.780 Semiconductor Manufacturing (MIT)

Description

6.780 covers statistical modeling and the control of semiconductor fabrication processes and plants. Topics covered include: design of experiments, response surface modeling, and process optimization; defect and parametric yield modeling; process/device/circuit yield optimization; monitoring, diagnosis, and feedback control of equipment and processes; and analysis and scheduling of semiconductor manufacturing operations. 6.780 covers statistical modeling and the control of semiconductor fabrication processes and plants. Topics covered include: design of experiments, response surface modeling, and process optimization; defect and parametric yield modeling; process/device/circuit yield optimization; monitoring, diagnosis, and feedback control of equipment and processes; and analysis and scheduling of semiconductor manufacturing operations.

Subjects

Semiconductor manufacturing | Semiconductor manufacturing | statistics | statistics | distributions | distributions | estimation | estimation | hypothesis testing | hypothesis testing | statistical process control | statistical process control | control chart | control chart | control chart design | control chart design | design of experiments | design of experiments | empirical equipment | empirical equipment | process modeling | process modeling | experimental design | experimental design | yield models | yield models | spatial variation | spatial variation | spatial models | spatial models | design for manufacturability | design for manufacturability | equipment monitoring | equipment monitoring | equipment diagnosis | equipment diagnosis | equipment control | equipment control | run by run | run by run | multistage process control | multistage process control | scheduling | scheduling | planning | planning | factory modeling | factory modeling | factory infrastructure | factory infrastructure | environmental | environmental | health and safety | health and safety | computer integrated manufacturing | computer integrated manufacturing | factory operation | factory operation | factory design | factory design | advanced process control | advanced process control | yield learning | yield learning

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.386 New Econometric Methods (MIT) 14.386 New Econometric Methods (MIT)

Description

This course focuses on recent developments in econometrics, especially structural estimation. The topics include nonseparable models, models of imperfect competition, auction models, duration models, and nonlinear panel data. Results are illustrated with economic applications. This course focuses on recent developments in econometrics, especially structural estimation. The topics include nonseparable models, models of imperfect competition, auction models, duration models, and nonlinear panel data. Results are illustrated with economic applications.

Subjects

econometrics | econometrics | recent developments | recent developments | structural estimation | structural estimation | nonseparable models | nonseparable models | models of imperfect competition | models of imperfect competition | auction models | auction models | duration models | duration models | and nonlinear panel data | and nonlinear panel data | economic applications | economic applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT) 22.611J Introduction to Plasma Physics I (MIT)

Description

In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne

Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | controlled thermonuclear fusion | controlled thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | charged particles | charged particles | magnetic fields | magnetic fields | plasma confinement schemes | plasma confinement schemes | MHD models | MHD models | simple equilibrium | simple equilibrium | stability analysis | stability analysis | Two-fluid hydrodynamic plasma models | Two-fluid hydrodynamic plasma models | wave propagation | wave propagation | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities | fourth state of matter | fourth state of matter | plasma state | plasma state | visible universe | visible universe | economics | economics | plasmas | plasmas | motion of charged particles | motion of charged particles | two-fluid hydrodynamic plasma models | two-fluid hydrodynamic plasma models | Debye Shielding | Debye Shielding | collective effects | collective effects | charged particle motion | charged particle motion | EM Fields | EM Fields | cross-sections | cross-sections | relaxation | relaxation | fluid plasma descriptions | fluid plasma descriptions | MHD equilibrium | MHD equilibrium | MHD dynamics | MHD dynamics | dynamics in two-fluid plasmas | dynamics in two-fluid plasmas | cold plasma waves | cold plasma waves | magnetic field | magnetic field | microscopic to fluid plasma descriptions | microscopic to fluid plasma descriptions | Vlasov-Maxwell kinetic theory.linear Landau growth | Vlasov-Maxwell kinetic theory.linear Landau growth | kinetic description of waves | kinetic description of waves | instabilities | instabilities | Vlasov-Maxwell kinetic theory | Vlasov-Maxwell kinetic theory | linear Landau growth | linear Landau growth | 22.611 | 22.611 | 6.651 | 6.651 | 8.613 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.750 Modeling Issues in Speech and Hearing (MIT) HST.750 Modeling Issues in Speech and Hearing (MIT)

Description

This course explores the theory and practice of scientific modeling in the context of auditory and speech biophysics. Based on seminar-style discussions of the research literature, the class draws on examples from hearing and speech, and explores general, meta-theoretical issues that transcend the particular subject matter. Examples include: What is a model? What is the process of model building? What are the different approaches to modeling? What is the relationship between theory and experiment? How are models tested? What constitutes a good model? This course explores the theory and practice of scientific modeling in the context of auditory and speech biophysics. Based on seminar-style discussions of the research literature, the class draws on examples from hearing and speech, and explores general, meta-theoretical issues that transcend the particular subject matter. Examples include: What is a model? What is the process of model building? What are the different approaches to modeling? What is the relationship between theory and experiment? How are models tested? What constitutes a good model?

Subjects

hearing | hearing | speech | speech | modeling biology | modeling biology | network model of the ear | network model of the ear | model building | model building | dimensional analysis and scaling | dimensional analysis and scaling | resampling | resampling | monte carlo | monte carlo | forward vs. inverse | forward vs. inverse | chaos | chaos | limits of prediction | limits of prediction | hodgkin | hodgkin | huxley | huxley | molecular mathematic biology | molecular mathematic biology | cochlear input impedance | cochlear input impedance | auditory network | auditory network | auditory morphology | auditory morphology | electric model of neural cell fiber | electric model of neural cell fiber | electric diagrams of neural cells | electric diagrams of neural cells | linear regression | linear regression | sensitivity analysis | sensitivity analysis | cochlea | cochlea | inner ear | inner ear | middle ear | middle ear | auditory cortex | auditory cortex | scientific literature | scientific literature | analysis | analysis | paper analysis | paper analysis | tent maps | tent maps | quadratic maps | quadratic maps

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

"

Description

Subjects

airplane | aircraft | aviation | hangar | shell | orion | lockheed | twa | swissair | altair | 9c | shelloil | lockheedorion | mantz | lockheedaircraft | shellaviation | paulmantz | ch167 | orion9c | lockheed9corion | tallmantz | lockheedaltair | lockheedorionmodel9 | lockheedmodel9orion | lockheedmodel9 | lockheedorion9 | lockheed9orion | lockheed9 | model9orion | orion9 | nr12222 | lockheedorion9c | nc12222 | x12222 | n12222 | lockheeddl2aaltair | lockheeddl2a | lockheedorionmodel9c | lockheedmodel9corion | lockheedmodel9c | lockheed9c | model9corion | vision:mountain=0678 | vision:outdoor=0944 | vision:snow=0521 | vision:car=0692 | shelllightning

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata