Searching for moh : 33 results found | RSS Feed for this search

1

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lt. Com. R.E. Byrd (LOC) Lt. Com. R.E. Byrd (LOC)

Description

Subjects

libraryofcongress | libraryofcongress | rearadmiralrichardevelynbyrdjrusn | rearadmiralrichardevelynbyrdjrusn | richardebyrd | richardebyrd | navalaviationboard | navalaviationboard | usnavynctransatlanticcrossing | usnavynctransatlanticcrossing | usnavynavigators | usnavynavigators | byrd | byrd | wwi | wwi | 1919 | 1919 | unitedstatesnavy | unitedstatesnavy | usnavy | usnavy | usn | usn | navalaviator | navalaviator | aviator | aviator | explorer | explorer | arcticexplorer | arcticexplorer | polarexplorer | polarexplorer | richardevelynbyrdjr | richardevelynbyrdjr | richardebyrdjr | richardebyrdjr | richardbyrdjr | richardbyrdjr | richardevelynbyrd | richardevelynbyrd | richardbyrd | richardbyrd | admiralrichardbyrd | admiralrichardbyrd | admiralbyrd | admiralbyrd | medalofhonor | medalofhonor | moh | moh | congressionalmedalofhonor | congressionalmedalofhonor | cmoh | cmoh

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Ted Cann (LOC) Ted Cann (LOC)

Description

Subjects

libraryofcongress | libraryofcongress | sailor | sailor | usnavy | usnavy | usn | usn | moh | moh | unitedstatesnavy | unitedstatesnavy | cann | cann | medalofhonor | medalofhonor | congressionalmedalofhonor | congressionalmedalofhonor | cmoh | cmoh | tedfordcann | tedfordcann | tedcann | tedcann | thcann | thcann | tedfordharriscann | tedfordharriscann | tedfordhcann | tedfordhcann

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Hugo Mohrlock Collection Image Hugo Mohrlock Collection Image

Description

Subjects

hugomohrlock | hugomohrlock | mohrlock | mohrlock

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings | 16.01 | 16.02 | 16.03 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Atmosphere, Ocean and Climate Dynamics (MIT) 12.003 Atmosphere, Ocean and Climate Dynamics (MIT)

Description

Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall. Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS-99 STS-99

Description

Subjects

2000 | 2000 | missionpatch | missionpatch | february11 | february11 | february22 | february22 | mamorumohri | mamorumohri | janicevoss | janicevoss | sts99 | sts99 | gerhardthiele | gerhardthiele | janetkavandi | janetkavandi | kevinkregel | kevinkregel | dominicpudwillgorie | dominicpudwillgorie

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Castle Gate, Mohill, Co. Leitrim Castle Gate, Mohill, Co. Leitrim

Description

Subjects

castle | castle | donkey | donkey | cart | cart | 20thcentury | 20thcentury | turret | turret | eason | eason | connacht | connacht | leitrim | leitrim | connaught | connaught | glassnegative | glassnegative | castlestreet | castlestreet | irishguards | irishguards | johnkane | johnkane | castlebridge | castlebridge | mohill | mohill | nationallibraryofireland | nationallibraryofireland | coleitrim | coleitrim | jeremiahjohnston | jeremiahjohnston | maothail | maothail | easonson | easonson | easoncollection | easoncollection | easonphotographiccollection | easonphotographiccollection | ladyfrancescrofton | ladyfrancescrofton | jeremiahjohnstone | jeremiahjohnstone | francesmargaretirby | francesmargaretirby | sirhughdeniscrofton | sirhughdeniscrofton | sirgeorgemorgancrofton | sirgeorgemorgancrofton

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Northern Bank, Mohill, Co. Leitrim Northern Bank, Mohill, Co. Leitrim

Description

Subjects

artnouveau | artnouveau | 20thcentury | 20thcentury | eason | eason | windowbox | windowbox | countyleitrim | countyleitrim | glassnegative | glassnegative | northernbank | northernbank | mohill | mohill | nationallibraryofireland | nationallibraryofireland | easonson | easonson | easoncollection | easoncollection | easonphotographiccollection | easonphotographiccollection

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Pneus Mohawk. Lisboa, Portugal Pneus Mohawk. Lisboa, Portugal

Description

Subjects

fundaçãocaloustegulbenkian | fundaçãocaloustegulbenkian | gulbenkian | gulbenkian | bibliotecadearte | bibliotecadearte | biblioteca | biblioteca | arte | arte | márionovais | márionovais | mário | mário | novais | novais | loja | loja | pneus | pneus | mohawk | mohawk | ruavítorcordon | ruavítorcordon | ruaserpapinto | ruaserpapinto | lisboa | lisboa | portugal | portugal

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=26577438@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

is actually O'Brien's Pillar... is actually O'Brien's Pillar...

Description

Subjects

memorial | memorial | pillar | pillar | obrien | obrien | column | column | cliffsofmoher | cliffsofmoher | cornelius | cornelius | doric | doric | countyclare | countyclare | liscannor | liscannor | thomasmayne | thomasmayne | lanternslides | lanternslides | nationallibraryofireland | nationallibraryofireland | corneliusobrien | corneliusobrien | locationidentified | locationidentified | bridgetswell | bridgetswell | thomasholmesmason | thomasholmesmason | thomashmasonsonslimited | thomashmasonsonslimited | knockaunnagoneeny | knockaunnagoneeny | connyscolumn | connyscolumn | obrienspillar | obrienspillar

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Pneus Mohawk. Lisboa, Portugal Pneus Mohawk. Lisboa, Portugal

Description

Subjects

fundaçãocaloustegulbenkian | fundaçãocaloustegulbenkian | gulbenkian | gulbenkian | bibliotecadearte | bibliotecadearte | biblioteca | biblioteca | arte | arte | márionovais | márionovais | mário | mário | novais | novais | loja | loja | pneus | pneus | mohawk | mohawk | ruavítorcordon | ruavítorcordon | ruaserpapinto | ruaserpapinto | lisboa | lisboa | portugal | portugal

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=26577438@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

[Mohman Singh]

Description

Subjects

earlyaviation | flight | flying | aerial | airborne | photography | smu | southernmethodistuniversity | library | archives | aircraft | manmohansingh | singh | manmohan | aviator | pilot | curtiss | curtisspusher | pusher | curtissflyingschool | flyingschool | pilotschool | aviationschool

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Mechanical Behaviour of Materials: Stress analysis and Mohr's circle

Description

This set of animations explains how to use the Mohr's circle in stress analysis. From TLP: Stress analysis and Mohr's circle

Subjects

stress | strain | tensor | yield criterion | interactive mohr circle | mohr circle | plastic | elastic | doitpoms | university of cambridge | animation | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Physics of Atmospheres and Oceans (MIT) 12.003 Physics of Atmospheres and Oceans (MIT)

Description

The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data. The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.307 Weather and Climate Laboratory (MIT) 12.307 Weather and Climate Laboratory (MIT)

Description

Course 12.307 is an undergraduate course intended to illustrate, by means of 'hands on' projects, the basic dynamical and physical principles that govern the general circulation of the atmosphere and ocean and the day to day sequence of weather events.  The course parallels the content of the new undergraduate textbook Atmosphere, Ocean and Climate Dynamics by John Marshall and R. Alan Plumb. Course 12.307 is an undergraduate course intended to illustrate, by means of 'hands on' projects, the basic dynamical and physical principles that govern the general circulation of the atmosphere and ocean and the day to day sequence of weather events.  The course parallels the content of the new undergraduate textbook Atmosphere, Ocean and Climate Dynamics by John Marshall and R. Alan Plumb.

Subjects

Rotation stiffens fluids | Rotation stiffens fluids | Convection | Convection | Radial inflow | Radial inflow | Parabolic table | Parabolic table | inertial Circles | inertial Circles | Taylor Columns | Taylor Columns | Thermal Wind and Hadley Circulation | Thermal Wind and Hadley Circulation | Slope of a frontal surface | Slope of a frontal surface | Ekman layers | Ekman layers | Perrot's bathtub experiment | Perrot's bathtub experiment | Atmospheric General circulation | Atmospheric General circulation | Stress-driven circulation and Ekman layers | Stress-driven circulation and Ekman layers | Ocean gyres | Ocean gyres | Thermohaline Circulation | Thermohaline Circulation | Geostrophic/Ageostrophic Flow | Geostrophic/Ageostrophic Flow | Mass and Wind | Mass and Wind | Hydrostatic balance | Hydrostatic balance | Baroclinic instability | Baroclinic instability | Hurricane Gustav | Hurricane Gustav

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.091 Nuclear Reactor Safety (MIT) 22.091 Nuclear Reactor Safety (MIT)

Description

Problems in nuclear engineering often involve applying knowledge from many disciplines simultaneously in achieving satisfactory solutions. The course will focus on understanding the complete nuclear reactor system including the balance of plant, support systems and resulting interdependencies affecting the overall safety of the plant and regulatory oversight. Both the Seabrook and Pilgrim nuclear plant simulators will be used as part of the educational experience to provide as realistic as possible understanding of nuclear power systems short of being at the reactor. Problems in nuclear engineering often involve applying knowledge from many disciplines simultaneously in achieving satisfactory solutions. The course will focus on understanding the complete nuclear reactor system including the balance of plant, support systems and resulting interdependencies affecting the overall safety of the plant and regulatory oversight. Both the Seabrook and Pilgrim nuclear plant simulators will be used as part of the educational experience to provide as realistic as possible understanding of nuclear power systems short of being at the reactor.

Subjects

nuclear | nuclear | reactor | reactor | safety | safety | dryout heat flux | dryout heat flux | preexisting hydrogen | preexisting hydrogen | blowdown gases | blowdown gases | downward propagation limit | downward propagation limit | debris dispersal | debris dispersal | direct containment heating | direct containment heating | gas blowthrough | gas blowthrough | seal table room | seal table room | subcompartment structures | subcompartment structures | compartmentalized geometries | compartmentalized geometries | overlying liquid layer | overlying liquid layer | preexisting atmosphere | preexisting atmosphere | blowdown time | blowdown time | melt generator | melt generator | detonation adiabatic | detonation adiabatic | thermohydraulic codes | thermohydraulic codes | hydrodynamic fragmentation | hydrodynamic fragmentation | vent clearing | vent clearing | combustion completeness | combustion completeness | containment pressurization | containment pressurization | melt retention | melt retention | containment loads | containment loads | melt ejection | melt ejection | containment geometry | containment geometry | hole ablation | hole ablation | Sandia National Laboratories | Sandia National Laboratories | Heat Transfer Conf | Heat Transfer Conf | Nuclear Regulatory Commission Report | Nuclear Regulatory Commission Report | Heat Mass Transfer | Heat Mass Transfer | The Combustion Institute | The Combustion Institute | Combustion Symposium International | Combustion Symposium International | New York | New York | Santa Barbara | Santa Barbara | Argonne National Laboratory | Argonne National Laboratory | Fluid Mech | Fluid Mech | Zion Probabilistic Safety Study | Zion Probabilistic Safety Study | Los Angeles | Los Angeles | Impact of Hydrogen | Impact of Hydrogen | Topical Meeting | Topical Meeting | Water Reactor Safety | Water Reactor Safety | Water Trans | Water Trans | Academic Press All | Academic Press All | American Society of Mechanical Engineers | American Society of Mechanical Engineers | Specialists Meeting | Specialists Meeting | University of California | University of California | Brookhaven National Laboratory | Brookhaven National Laboratory | Calvert Cliffs | Calvert Cliffs | Fourth Int | Fourth Int | International Conference | International Conference | New Trends. | New Trends.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Col. A. Miller, Maj. C. Spatz, Mrs. C.B. Spatz, Anna Spatz, Sgt. Tanner (LOC)

Description

Subjects

libraryofcongress | dc:identifier=httphdllocgovlocpnpggbain29507 | xmlns:dc=httppurlorgdcelements11 | aviation | aircraft | airplane | biplane | militaryaviation | aviator | carlandrewtooeyspaatz | carlandrewspaatz | carlaspaatz | carlspaatz | tooeyspaatz | spaatz | aviators | emmetttanner | tanner | emmetternesttanner | emmettetanner | eetanner | archiemiller | miller | medalofhonor | moh | congressionalmedalofhonor | hazelhurstfield | mineolanewyork | mineolalongisland | mineolany | mineolali | mineola | gardencitynewyork | gardencityny | gardencitylongisland | gardencityli | longisland | gardencity | rooseveltfield | charlesspatz | spatz | charlesbspatz | annespatz | annaspatz | dehavilland | dehavillanddh4 | dh4

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

wife, Anna Spatz (LOC)

Description

Subjects

libraryofcongress | dc:identifier=httphdllocgovlocpnpggbain29506 | xmlns:dc=httppurlorgdcelements11 | aviation | aircraft | airplane | biplane | militaryaviation | aviator | carlandrewtooeyspaatz | carlandrewspaatz | carlaspaatz | carlspaatz | tooeyspaatz | spaatz | aviators | emmetttanner | tanner | emmetternesttanner | emmettetanner | eetanner | archiemiller | miller | medalofhonor | moh | congressionalmedalofhonor | hazelhurstfield | mineolanewyork | mineolalongisland | mineolany | mineolali | mineola | gardencitynewyork | gardencityny | gardencitylongisland | gardencityli | longisland | gardencity | rooseveltfield | charlesspatz | spatz | charlesbspatz | annespatz | annaspatz | dehavilland | dehavillanddh4 | dh4

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Col. A. Miller, Lt. E.C. Kiel, Sgt. F.K. McKee (LOC)

Description

Subjects

libraryofcongress | dc:identifier=httphdllocgovlocpnpggbain29505 | xmlns:dc=httppurlorgdcelements11 | aviation | aircraft | airplane | biplane | militaryaviation | aviator | aviators | archiemiller | miller | medalofhonor | moh | congressionalmedalofhonor | hazelhurstfield | mineolanewyork | mineolalongisland | mineolany | mineolali | mineola | gardencitynewyork | gardencityny | gardencitylongisland | gardencityli | longisland | gardencity | rooseveltfield | emilcharleskiel | emilckiel | emilkiel | eckiel | kiel | frankmckee | mckee | dehavilland | dehavillanddh4 | dh4

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Col. A. Miller, Lt. E.C. Kiel, Sgt. F.K. McKee (LOC)

Description

Subjects

libraryofcongress | dc:identifier=httphdllocgovlocpnpggbain29504 | xmlns:dc=httppurlorgdcelements11 | aviation | aircraft | airplane | biplane | militaryaviation | aviator | aviators | archiemiller | miller | medalofhonor | moh | congressionalmedalofhonor | hazelhurstfield | mineolanewyork | mineolalongisland | mineolany | mineolali | mineola | gardencitynewyork | gardencityny | gardencitylongisland | gardencityli | longisland | gardencity | rooseveltfield | emilcharleskiel | emilckiel | emilkiel | eckiel | kiel | frankmckee | mckee | dehavilland | dehavillanddh4 | dh4

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Mechanical Behaviour of Materials: Stress analysis and Mohr's circle

Description

This set of animations explains how to use the Mohr's circle in stress analysis. From TLP: Stress analysis and Mohr's circle

Subjects

stress | strain | tensor | yield criterion | interactive Mohr circle | mohr circle | plastic | elastic | DoITPoMS | University of Cambridge | animation | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_animations.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata