Searching for molecular genetics : 13 results found | RSS Feed for this search

1

7.13 Experimental Microbial Genetics (MIT) 7.13 Experimental Microbial Genetics (MIT)

Description

In this class, students engage in independent research projects to probe various aspects of the physiology of the bacterium Pseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials In this class, students engage in independent research projects to probe various aspects of the physiology of the bacterium Pseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials

Subjects

microbiology | microbiology | genetics | genetics | pseudomonas | pseudomonas | bacteria | bacteria | genes | genes | pathogen | pathogen | mutagenesis | mutagenesis | PCR | PCR | DNA sequencing | DNA sequencing | enzyme assays | enzyme assays | gene expression | gene expression | molecular genetics | molecular genetics | plasmid manipulation | plasmid manipulation | genetic complementation | genetic complementation | laboratory | laboratory | protocol | protocol | vector | vector | mutant | mutant | cystic fibrosis | cystic fibrosis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT) 7.13 Experimental Microbial Genetics (MIT)

Description

Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology. Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology.

Subjects

microbiology | microbiology | genetics | genetics | rhodococcus | rhodococcus | bacteria | bacteria | genes | genes | plasmid manipulation | plasmid manipulation | mutagenesis | mutagenesis | PCR | PCR | DNA sequencing | DNA sequencing | enzyme assays | enzyme assays | gene expression | gene expression | molecular genetics | molecular genetics | Gram-positive | Gram-positive | gram-negative | gram-negative | bioconversion processes | bioconversion processes | synthesis | synthesis | precursors | precursors | metabolites | metabolites | genetic complementation | genetic complementation | laboratory | laboratory | lab | lab

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT) 7.13 Experimental Microbial Genetics (MIT)

Description

Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology. Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology.

Subjects

microbiology | microbiology | genetics | genetics | rhodococcus | rhodococcus | bacteria | bacteria | genes | genes | plasmid manipulation | plasmid manipulation | mutagenesis | mutagenesis | PCR | PCR | DNA sequencing | DNA sequencing | enzyme assays | enzyme assays | gene expression | gene expression | molecular genetics | molecular genetics | Gram-positive | Gram-positive | gram-negative | gram-negative | bioconversion processes | bioconversion processes | synthesis | synthesis | precursors | precursors | metabolites | metabolites | genetic complementation | genetic complementation | laboratory | laboratory | lab | lab

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.016 Introductory Biology (MIT) 7.016 Introductory Biology (MIT)

Description

7.016 Introductory Biology provides an introduction to fundamental principles of biochemistry, molecular biology and genetics for understanding the functions of living systems. Taught for the first time in Fall 2013, this course covers examples of the use of chemical biology and twenty-first-century molecular genetics in understanding human health and therapeutic intervention. The MIT Biology Department Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as the structure and synthesis of proteins, how these mol 7.016 Introductory Biology provides an introduction to fundamental principles of biochemistry, molecular biology and genetics for understanding the functions of living systems. Taught for the first time in Fall 2013, this course covers examples of the use of chemical biology and twenty-first-century molecular genetics in understanding human health and therapeutic intervention. The MIT Biology Department Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as the structure and synthesis of proteins, how these mol

Subjects

biochemistry | biochemistry | molecular biology | molecular biology | genetics | genetics | human genetics | human genetics | pedigrees | pedigrees | biochemical genetics | biochemical genetics | chemical biology | chemical biology | molecular genetics | molecular genetics | recombinant DNA technology | recombinant DNA technology | cell biology | cell biology | cancer | cancer | viruses | viruses | HIV | HIV | bacteria | bacteria | antibiotics | antibiotics | human health | human health | therapeutic intervention | therapeutic intervention | cell signaling | cell signaling | evolution | evolution | reproduction | reproduction | infectious diseases | infectious diseases | therapeutics | therapeutics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.15 Experimental Molecular Genetics (MIT) 7.15 Experimental Molecular Genetics (MIT)

Description

This project-based laboratory course provides students with in-depth experience in experimental molecular genetics, using modern methods of molecular biology and genetics to conduct original research. The course is geared towards students (including sophomores) who have a strong interest in a future career in biomedical research. This semester will focus on chemical genetics using Caenorhabditis elegans as a model system. Students will gain experience in research rationale and methods, as well as training in the planning, execution, and communication of experimental biology. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear This project-based laboratory course provides students with in-depth experience in experimental molecular genetics, using modern methods of molecular biology and genetics to conduct original research. The course is geared towards students (including sophomores) who have a strong interest in a future career in biomedical research. This semester will focus on chemical genetics using Caenorhabditis elegans as a model system. Students will gain experience in research rationale and methods, as well as training in the planning, execution, and communication of experimental biology. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear

Subjects

molecular genetics | molecular genetics | molecular biology | molecular biology | chemical genetics | chemical genetics | Caenorhabditis elegans | Caenorhabditis elegans | experimental biology | experimental biology | bioinformatics | bioinformatics | genetic linkage | genetic linkage | SNP mapping | SNP mapping | RNAi | RNAi | Gibson assembly | Gibson assembly | cDNA | cDNA | PCR | PCR | Primer design | Primer design | RNA extraction | RNA extraction | chemotaxis assay | chemotaxis assay | Next Generation Sequencing | Next Generation Sequencing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT)

Description

Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology.

Subjects

microbiology | genetics | rhodococcus | bacteria | genes | plasmid manipulation | mutagenesis | PCR | DNA sequencing | enzyme assays | gene expression | molecular genetics | Gram-positive | gram-negative | bioconversion processes | synthesis | precursors | metabolites | genetic complementation | laboratory | lab

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

OeRBITAL Project (Open educational Resources for Biologists Involved in Teaching And Learning)

Description

OeRBITAL is a discovery project co-ordinated by the UK Centre for Bioscience, working with a number of Discipline Consultants tasked to explore OER repositories to discover the most suitable resources for the attention of their discipline communities. Around 300 Open Educational Resources in areas relating to Bioscience disciplines have been identified by our experts, and evaluated for inclusion in a number of discipline-specific curated collections, as a means of highlighting these key resources for the benefit of the wider Bioscience academic community.

Subjects

ukoer | oer | biochemistry | oerbital | bioscience | biology | biomaths | pharmacology | neuroscience | physiology | cell biology | cancer biology | plant sciences | enzymology | ecology | marine biology | microbiology | molecular genetics | molecular biology | bioinformatics | ethics | Biological sciences | C000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Curated collection of Molecular Genetics resources

Description

This is an evaluated collection of links to resources for learning and understanding Molecular Genetics. This forms part of the UK Centre for Bioscience OeRBITAL project.

Subjects

ukoer | oerbital | molecular genetics | genes | Biological sciences | C000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.15 Experimental Molecular Genetics (MIT)

Description

This project-based laboratory course provides students with in-depth experience in experimental molecular genetics, using modern methods of molecular biology and genetics to conduct original research. The course is geared towards students (including sophomores) who have a strong interest in a future career in biomedical research. This semester will focus on chemical genetics using Caenorhabditis elegans as a model system. Students will gain experience in research rationale and methods, as well as training in the planning, execution, and communication of experimental biology. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear

Subjects

molecular genetics | molecular biology | chemical genetics | Caenorhabditis elegans | experimental biology | bioinformatics | genetic linkage | SNP mapping | RNAi | Gibson assembly | cDNA | PCR | Primer design | RNA extraction | chemotaxis assay | Next Generation Sequencing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.016 Introductory Biology (MIT)

Description

7.016 Introductory Biology provides an introduction to fundamental principles of biochemistry, molecular biology and genetics for understanding the functions of living systems. Taught for the first time in Fall 2013, this course covers examples of the use of chemical biology and twenty-first-century molecular genetics in understanding human health and therapeutic intervention. The MIT Biology Department Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as the structure and synthesis of proteins, how these mol

Subjects

biochemistry | molecular biology | genetics | human genetics | pedigrees | biochemical genetics | chemical biology | molecular genetics | recombinant DNA technology | cell biology | cancer | viruses | HIV | bacteria | antibiotics | human health | therapeutic intervention | cell signaling | evolution | reproduction | infectious diseases | therapeutics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT)

Description

In this class, students engage in independent research projects to probe various aspects of the physiology of the bacterium Pseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials

Subjects

microbiology | genetics | pseudomonas | bacteria | genes | pathogen | mutagenesis | PCR | DNA sequencing | enzyme assays | gene expression | molecular genetics | plasmid manipulation | genetic complementation | laboratory | protocol | vector | mutant | cystic fibrosis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT)

Description

Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology.

Subjects

microbiology | genetics | rhodococcus | bacteria | genes | plasmid manipulation | mutagenesis | PCR | DNA sequencing | enzyme assays | gene expression | molecular genetics | Gram-positive | gram-negative | bioconversion processes | synthesis | precursors | metabolites | genetic complementation | laboratory | lab

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.13 Experimental Microbial Genetics (MIT)

Description

Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of research in microbiology.

Subjects

microbiology | genetics | rhodococcus | bacteria | genes | plasmid manipulation | mutagenesis | PCR | DNA sequencing | enzyme assays | gene expression | molecular genetics | Gram-positive | gram-negative | bioconversion processes | synthesis | precursors | metabolites | genetic complementation | laboratory | lab

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata