Searching for momentum : 99 results found | RSS Feed for this search

8.05 Quantum Physics II (MIT) 8.05 Quantum Physics II (MIT)

Description

This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogen This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogenSubjects

General formalism of quantum mechanics: states | General formalism of quantum mechanics: states | operators | operators | Dirac notation | Dirac notation | representations | representations | measurement theory | measurement theory | Harmonic oscillator: operator algebra | Harmonic oscillator: operator algebra | states | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | bound and scattering states | qualitative analysis of wavefunctions | qualitative analysis of wavefunctions | Angular momentum: operators | Angular momentum: operators | commutator algebra | commutator algebra | eigenvalues and eigenstates | eigenvalues and eigenstates | spherical harmonics | spherical harmonics | Spin: Stern-Gerlach devices and measurements | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | nuclear magnetic resonance | spin and statistics | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | spin systems | allotropic forms of hydrogen | allotropic forms of hydrogen | Angular momentum | Angular momentum | Harmonic oscillator | Harmonic oscillator | operator algebra | operator algebra | Spin | Spin | Stern-Gerlach devices and measurements | Stern-Gerlach devices and measurements | central potentials and the radial equation | central potentials and the radial equation | Clebsch-Gordan series and coefficients | Clebsch-Gordan series and coefficients | quantum physics | quantum physicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.05 Quantum Physics II (MIT) 8.05 Quantum Physics II (MIT)

Description

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum. Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.Subjects

General formalism of quantum mechanics: states | General formalism of quantum mechanics: states | operators | operators | Dirac notation | Dirac notation | representations | representations | measurement theory | measurement theory | Harmonic oscillator: operator algebra | Harmonic oscillator: operator algebra | states | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | bound and scattering states | qualitative analysis of wavefunctions | qualitative analysis of wavefunctions | Angular momentum: operators | Angular momentum: operators | commutator algebra | commutator algebra | eigenvalues and eigenstates | eigenvalues and eigenstates | spherical harmonics | spherical harmonics | Spin: Stern-Gerlach devices and measurements | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | nuclear magnetic resonance | spin and statistics | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | spin systems | allotropic forms of hydrogen | allotropic forms of hydrogen | Angular momentum | Angular momentum | Harmonic oscillator | Harmonic oscillator | operator algebra | operator algebra | Spin | Spin | Stern-Gerlach devices and measurements | Stern-Gerlach devices and measurements | central potentials and the radial equation | central potentials and the radial equation | Clebsch-Gordan series and coefficients | Clebsch-Gordan series and coefficients | quantum physics | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogen | and allotropic forms of hydrogenLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.13 Aerodynamics of Viscous Fluids (MIT) 16.13 Aerodynamics of Viscous Fluids (MIT)

Description

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.Subjects

aerodynamics | aerodynamics | viscous fluids | viscous fluids | viscosity | viscosity | fundamental theorem of kinematics | fundamental theorem of kinematics | convection | convection | vorticity | vorticity | strain | strain | Eulerian description | Eulerian description | Lagrangian description | Lagrangian description | conservation of mass | conservation of mass | continuity | continuity | conservation of momentum | conservation of momentum | stress tensor | stress tensor | newtonian fluid | newtonian fluid | circulation | circulation | Navier-Stokes | Navier-Stokes | similarity | similarity | dimensional analysis | dimensional analysis | thin shear later approximation | thin shear later approximation | TSL coordinates | TSL coordinates | boundary conditions | boundary conditions | shear later categories | shear later categories | local scaling | local scaling | Falkner-Skan flows | Falkner-Skan flows | solution techniques | solution techniques | finite difference methods | finite difference methods | Newton-Raphson | Newton-Raphson | integral momentum equation | integral momentum equation | Thwaites method | Thwaites method | integral kinetic energy equation | integral kinetic energy equation | dissipation | dissipation | asymptotic perturbation | asymptotic perturbation | displacement body | displacement body | transpiration | transpiration | form drag | form drag | stall | stall | interacting boundary layer theory | interacting boundary layer theory | stability | stability | transition | transition | small-perturbation | small-perturbation | Orr-Somemerfeld | Orr-Somemerfeld | temporal amplification | temporal amplification | spatial amplification | spatial amplification | Reynolds | Reynolds | Prandtl | Prandtl | turbulent boundary layer | turbulent boundary layer | wake | wake | wall layers | wall layers | inner variables | inner variables | outer variables | outer variables | roughness | roughness | Clauser | Clauser | Dissipation formula | Dissipation formula | integral closer | integral closer | turbulence modeling | turbulence modeling | transport models | transport models | turbulent shear layers | turbulent shear layers | compressible then shear layers | compressible then shear layers | compressibility | compressibility | temperature profile | temperature profile | heat flux | heat flux | 3D boundary layers | 3D boundary layers | crossflow | crossflow | lateral dilation | lateral dilation | 3D separation | 3D separation | constant-crossflow | constant-crossflow | 3D transition | 3D transition | compressible thin shear layers | compressible thin shear layersLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.012 Physics I: Classical Mechanics (MIT) 8.012 Physics I: Classical Mechanics (MIT)

Description

This class is an introduction to classical mechanics for students who are comfortable with calculus. The main topics are: Vectors, Kinematics, Forces, Motion, Momentum, Energy, Angular Motion, Angular Momentum, Gravity, Planetary Motion, Moving Frames, and the Motion of Rigid Bodies. This class is an introduction to classical mechanics for students who are comfortable with calculus. The main topics are: Vectors, Kinematics, Forces, Motion, Momentum, Energy, Angular Motion, Angular Momentum, Gravity, Planetary Motion, Moving Frames, and the Motion of Rigid Bodies.Subjects

elementary mechanics | elementary mechanics | Newton's laws | Newton's laws | momentum | momentum | energy | energy | angular momentum | angular momentum | rigid body motion | rigid body motion | non-inertial | non-inertialLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.01L Physics I: Classical Mechanics (MIT) 8.01L Physics I: Classical Mechanics (MIT)

Description

8.01L is an introductory mechanics course, which covers all the topics covered in 8.01T. The class meets throughout the fall, and continues throughout the Independent Activities Period (IAP). 8.01L is an introductory mechanics course, which covers all the topics covered in 8.01T. The class meets throughout the fall, and continues throughout the Independent Activities Period (IAP).Subjects

Introductory classical mechanics | Introductory classical mechanics | space | space | time | time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | forces | forces | static equilibrium | static equilibrium | particle dynamics | particle dynamics | conservation of momentum | conservation of momentum | relative inertial frames | relative inertial frames | non-inertial force | non-inertial force | work | work | potential energy | potential energy | conservation of energy | conservation of energy | ideal gas | ideal gas | rigid bodies | rigid bodies | rotational dynamics | rotational dynamics | vibrational motion | vibrational motion | conservation of angular momentum | conservation of angular momentum | central force motions | central force motions | fluid mechanics | fluid mechanics | Technology-Enabled Active Learning | Technology-Enabled Active LearningLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.033 Relativity (MIT) 8.033 Relativity (MIT)

Description

Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay. Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay.Subjects

Einstein's postulates | Einstein's postulates | consequences for simultaneity | time dilation | length contraction | clock synchronization | consequences for simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects and paradoxes | relativistic effects and paradoxes | Minkowski diagrams | Minkowski diagrams | invariants and four-vectors | invariants and four-vectors | momentum | energy and mass | momentum | energy and mass | particle collisions | particle collisions | Relativity and electricity | Relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | General Relativity | General Relativity | principle of equivalence | principle of equivalence | the Schwarzchild metric | the Schwarzchild metric | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | gravitational red shift | particle trajectories | particle trajectories | light trajectories | light trajectories | invariants | invariants | four-vectors | four-vectors | momentum | momentum | energy | energy | mass | mass | relativistic effects | relativistic effects | paradoxes | paradoxes | electricity | electricity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Schwarzchild metric | Schwarzchild metric | geodesics | geodesics | Shaprio delay | Shaprio delay | relativistic kinematics | relativistic kinematics | relativistic dynamics | relativistic dynamics | electromagnetism | electromagnetism | hubble expansion | hubble expansion | universe | universe | equivalence principle | equivalence principle | curved space time | curved space time | Ether Theory | Ether Theory | constants | constants | speed of light | speed of light | c | c | graph | graph | pythagorem theorem | pythagorem theorem | triangle | triangle | arrows | arrowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataAstrophysics (MIT) Astrophysics (MIT)

Description

Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advancedSubjects

black hole | black hole | general relativity | general relativity | astrophysics | astrophysics | cosmology | cosmology | Energy and momentum in flat spacetime | Energy and momentum in flat spacetime | the metric | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | trajectories and orbits of particles and light | elementary models of the Cosmos | elementary models of the Cosmos | Global Positioning System | Global Positioning System | solar system tests of relativity | solar system tests of relativity | descending into a black hole | descending into a black hole | gravitational lensing | gravitational lensing | gravitational waves | gravitational waves | Gravity Probe B | Gravity Probe B | more advanced models of the Cosmos | more advanced models of the Cosmos | spacetime curvature | spacetime curvature | rotating centers of attraction | rotating centers of attraction | nonrotating centers of attraction | nonrotating centers of attraction | event horizon | event horizon | energy | energy | momentum | momentum | flat spacetime | flat spacetime | metric | metric | trajectories | trajectories | orbits | orbits | particles | particles | light | light | elementary | elementary | models | models | cosmos | cosmos | spacetime | spacetime | curvature | curvature | flat | flat | GPS | GPS | gravitational | gravitational | lensing | lensing | waves | waves | rotating | rotating | nonrotating | nonrotating | centers | centers | attraction | attraction | solar system | solar system | tests | tests | relativity | relativity | general | general | advanced | advancedLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.100 Aerodynamics (MIT) 16.100 Aerodynamics (MIT)

Description

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLAB This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLABSubjects

aerodynamics | aerodynamics | airflow | airflow | air | air | body | body | aircraft | aircraft | aerodynamic modes | aerodynamic modes | aero | aero | forces | forces | flow | flow | computational | computational | CFD | CFD | aerodynamic analysis | aerodynamic analysis | lift | lift | drag | drag | potential flows | potential flows | imcompressible | imcompressible | supersonic | supersonic | subsonic | subsonic | panel method | panel method | vortex lattice method | vortex lattice method | boudary layer | boudary layer | transition | transition | turbulence | turbulence | inviscid | inviscid | viscous | viscous | euler | euler | navier-stokes | navier-stokes | wind tunnel | wind tunnel | flow similarity | flow similarity | non-dimensional | non-dimensional | mach number | mach number | reynolds number | reynolds number | integral momentum | integral momentum | airfoil | airfoil | wing | wing | stall | stall | friction drag | friction drag | induced drag | induced drag | wave drag | wave drag | pressure drag | pressure drag | fluid element | fluid element | shear strain | shear strain | normal strain | normal strain | vorticity | vorticity | divergence | divergence | substantial derviative | substantial derviative | laminar | laminar | displacement thickness | displacement thickness | momentum thickness | momentum thickness | skin friction | skin friction | separation | separation | velocity profile | velocity profile | 2-d panel | 2-d panel | 3-d vortex | 3-d vortex | thin airfoil | thin airfoil | lifting line | lifting line | aspect ratio | aspect ratio | twist | twist | camber | camber | wing loading | wing loading | roll moments | roll moments | finite volume approximation | finite volume approximation | shocks | shocks | expansion fans | expansion fans | shock-expansion theory | shock-expansion theory | transonic | transonic | critical mach number | critical mach number | wing sweep | wing sweep | Kutta condition | Kutta condition | team project | team project | blended-wing-body | blended-wing-body | computational fluid dynamics | computational fluid dynamics | Incompressible | IncompressibleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.012 Physics I (MIT) 8.012 Physics I (MIT)

Description

Elementary mechanics, presented at greater depth than in 8.01(Calculus). Newton's laws, concepts of momentum, energy, angular momentum, rigid body motion, and non-inertial systems. Uses elementary calculus freely. Concurrent registration in a math subject more advanced than 18.01 is recommended. In addition to the theoretical subject matter, several experiments in classical mechanics are performed by the students in the laboratory. Elementary mechanics, presented at greater depth than in 8.01(Calculus). Newton's laws, concepts of momentum, energy, angular momentum, rigid body motion, and non-inertial systems. Uses elementary calculus freely. Concurrent registration in a math subject more advanced than 18.01 is recommended. In addition to the theoretical subject matter, several experiments in classical mechanics are performed by the students in the laboratory.Subjects

elementary mechanics | elementary mechanics | Newton's laws | Newton's laws | momentum | momentum | energy | energy | angular momentum | angular momentum | rigid body motion | rigid body motion | non-inertial systems | non-inertial systems | classical mechanics | classical mechanicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata10.52 Mechanics of Fluids (MIT) 10.52 Mechanics of Fluids (MIT)

Description

This course is an advanced subject in fluid and continuum mechanics. The course content includes kinematics, macroscopic balances for linear and angular momentum, stress tensors, creeping flows and the lubrication approximation, the boundary layer approximation, linear stability theory, and some simple turbulent flows. This course is an advanced subject in fluid and continuum mechanics. The course content includes kinematics, macroscopic balances for linear and angular momentum, stress tensors, creeping flows and the lubrication approximation, the boundary layer approximation, linear stability theory, and some simple turbulent flows.Subjects

fluid mechanics | fluid mechanics | continuum mechanics | continuum mechanics | kinematics | kinematics | macroscopic balances for linear momentum | macroscopic balances for linear momentum | macroscopic balances for angular momentum | macroscopic balances for angular momentum | the stress tensor | the stress tensor | creeping flows | creeping flows | lubrication approximation | lubrication approximation | boundary layer approximation | boundary layer approximation | linear stability theory | linear stability theory | simple turbulent flows | simple turbulent flowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata15.875 Applications of System Dynamics (MIT) 15.875 Applications of System Dynamics (MIT)

Description

15.875 is a project-based course that explores how organizations can use system dynamics to achieve important goals. In small groups, students learn modeling and consulting skills by working on a term-long project with real-life managers. A diverse set of businesses and organizations sponsor class projects, from start-ups to the Fortune 500. The course focuses on gaining practical insight from the system dynamics process, and appeals to people interested in system dynamics, consulting, or managerial policy-making. 15.875 is a project-based course that explores how organizations can use system dynamics to achieve important goals. In small groups, students learn modeling and consulting skills by working on a term-long project with real-life managers. A diverse set of businesses and organizations sponsor class projects, from start-ups to the Fortune 500. The course focuses on gaining practical insight from the system dynamics process, and appeals to people interested in system dynamics, consulting, or managerial policy-making.Subjects

system dynamics process; modeling; business consulting; managerial policy-making; team project; standard method; process consultation; system consultation; system processes; modeling loops; analyzing loops; diffusion model; problem solving; reference modes; momentum policies; causal loop; client consultations; client consulting; molecules of structure; system dynamics models | system dynamics process; modeling; business consulting; managerial policy-making; team project; standard method; process consultation; system consultation; system processes; modeling loops; analyzing loops; diffusion model; problem solving; reference modes; momentum policies; causal loop; client consultations; client consulting; molecules of structure; system dynamics models | system dynamics process | system dynamics process | modeling | modeling | business consulting | business consulting | managerial policy-making | managerial policy-making | team project | team project | standard method | standard method | process consultation | process consultation | system consultation | system consultation | system processes | system processes | modeling loops | modeling loops | analyzing loops | analyzing loops | diffusion model | diffusion model | problem solving | problem solving | reference modes | reference modes | momentum policies | momentum policies | causal loop | causal loop | client consultations | client consultations | client consulting | client consulting | molecules of structure | molecules of structure | system dynamics models | system dynamics modelsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.012 Physics I: Classical Mechanics (MIT) 8.012 Physics I: Classical Mechanics (MIT)

Description

This class is an introduction to classical mechanics for students who are comfortable with calculus. The main topics are: Vectors, Kinematics, Forces, Motion, Momentum, Energy, Angular Motion, Angular Momentum, Gravity, Planetary Motion, Moving Frames, and the Motion of Rigid Bodies. This class is an introduction to classical mechanics for students who are comfortable with calculus. The main topics are: Vectors, Kinematics, Forces, Motion, Momentum, Energy, Angular Motion, Angular Momentum, Gravity, Planetary Motion, Moving Frames, and the Motion of Rigid Bodies.Subjects

elementary mechanics | elementary mechanics | Newton's laws | Newton's laws | momentum | momentum | energy | energy | angular momentum | angular momentum | rigid body motion | rigid body motion | non-inertial systems | non-inertial systems | classical mechanics | classical mechanicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.100 Aerodynamics (MIT) 16.100 Aerodynamics (MIT)

Description

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.Subjects

aerodynamics | aerodynamics | airflow | airflow | air | air | body | body | aircraft | aircraft | aerodynamic modes | aerodynamic modes | aero | aero | forces | forces | flow | flow | computational | computational | CFD | CFD | aerodynamic analysis | aerodynamic analysis | lift | lift | drag | drag | potential flows | potential flows | imcompressible | imcompressible | supersonic | supersonic | subsonic | subsonic | panel method | panel method | vortex lattice method | vortex lattice method | boudary layer | boudary layer | transition | transition | turbulence | turbulence | inviscid | inviscid | viscous | viscous | euler | euler | navier-stokes | navier-stokes | wind tunnel | wind tunnel | flow similarity | flow similarity | non-dimensional | non-dimensional | mach number | mach number | reynolds number | reynolds number | integral momentum | integral momentum | airfoil | airfoil | wing | wing | stall | stall | friction drag | friction drag | induced drag | induced drag | wave drag | wave drag | pressure drag | pressure drag | fluid element | fluid element | shear strain | shear strain | normal strain | normal strain | vorticity | vorticity | divergence | divergence | substantial derivative | substantial derivative | laminar | laminar | displacement thickness | displacement thickness | momentum thickness | momentum thickness | skin friction | skin friction | separation | separation | velocity profile | velocity profile | 2-d panel | 2-d panel | 3-d vortex | 3-d vortex | thin airfoil | thin airfoil | lifting line | lifting line | aspect ratio | aspect ratio | twist | twist | camber | camber | wing loading | wing loading | roll moments | roll moments | finite volume approximation | finite volume approximation | shocks | shocks | expansion fans | expansion fans | shock-expansion theory | shock-expansion theory | transonic | transonic | critical mach number | critical mach number | wing sweep | wing sweep | Kutta condition | Kutta condition | team project | team project | blended-wing-body | blended-wing-body | computational fluid dynamics | computational fluid dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.Subjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogenLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-8.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.Subjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogenLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogenSubjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.Subjects

General formalism of quantum mechanics: states | operators | Dirac notation | representations | measurement theory | Harmonic oscillator: operator algebra | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | qualitative analysis of wavefunctions | Angular momentum: operators | commutator algebra | eigenvalues and eigenstates | spherical harmonics | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | allotropic forms of hydrogen | Angular momentum | Harmonic oscillator | operator algebra | Spin | Stern-Gerlach devices and measurements | central potentials and the radial equation | Clebsch-Gordan series and coefficients | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogenLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.032 Dynamics (MIT) 2.032 Dynamics (MIT)

Description

This course reviews momentum and energy principles, and then covers the following topics: Hamilton's principle and Lagrange's equations; three-dimensional kinematics and dynamics of rigid bodies; steady motions and small deviations therefrom, gyroscopic effects, and causes of instability; free and forced vibrations of lumped-parameter and continuous systems; nonlinear oscillations and the phase plane; nonholonomic systems; and an introduction to wave propagation in continuous systems. This course was originally developed by Professor T. Akylas. This course reviews momentum and energy principles, and then covers the following topics: Hamilton's principle and Lagrange's equations; three-dimensional kinematics and dynamics of rigid bodies; steady motions and small deviations therefrom, gyroscopic effects, and causes of instability; free and forced vibrations of lumped-parameter and continuous systems; nonlinear oscillations and the phase plane; nonholonomic systems; and an introduction to wave propagation in continuous systems. This course was originally developed by Professor T. Akylas.Subjects

motion | motion | momentum | momentum | work-energy principle | work-energy principle | degrees of freedom | degrees of freedom | Lagrange's equations | Lagrange's equations | D'Alembert's principle | D'Alembert's principle | Hamilton's principle | Hamilton's principle | gyroscope | gyroscope | gyroscopic effect | gyroscopic effect | steady motions | steady motions | nature of small deviations | nature of small deviations | natural modes | natural modes | natural frequencies for continuous and lumped parameter systems | natural frequencies for continuous and lumped parameter systems | mode shapes | mode shapes | forced vibrations | forced vibrations | dynamic stability theory | dynamic stability theory | instability | instabilityLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist. This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.Subjects

meteorology | meteorology | climate | climate | oceanography | oceanography | Eulerian and Lagrangian kinematics | Eulerian and Lagrangian kinematics | mass | mass | momentum | momentum | energy | energy | Vorticity | Vorticity | divergence Scaling | divergence Scaling | geostrophic approximation | geostrophic approximation | Ekman layers | Ekman layers | Vortex motion | Vortex motionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Elementary mechanics, presented at greater depth than in 8.01(Calculus). Newton's laws, concepts of momentum, energy, angular momentum, rigid body motion, and non-inertial systems. Uses elementary calculus freely. Concurrent registration in a math subject more advanced than 18.01 is recommended. In addition to the theoretical subject matter, several experiments in classical mechanics are performed by the students in the laboratory.Subjects

elementary mechanics | Newton's laws | momentum | energy | angular momentum | rigid body motion | non-inertial systems | classical mechanicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.004 Modeling Dynamics and Control II (MIT) 2.004 Modeling Dynamics and Control II (MIT)

Description

This course is the second subject of a two-term sequence on modeling, analysis and control of dynamic systems. Topics covered include: kinematics and dynamics of mechanical systems, including rigid bodies in plane motion linear and angular momentum principles impact and collision problems linearization about equilibrium free and forced vibrations sensors and actuators control of mechanical systems integral and derivative action, lead and lag compensators root-locus design methods frequency-domain design methods applications to case-studies of multi-domain systems This course is the second subject of a two-term sequence on modeling, analysis and control of dynamic systems. Topics covered include: kinematics and dynamics of mechanical systems, including rigid bodies in plane motion linear and angular momentum principles impact and collision problems linearization about equilibrium free and forced vibrations sensors and actuators control of mechanical systems integral and derivative action, lead and lag compensators root-locus design methods frequency-domain design methods applications to case-studies of multi-domain systemsSubjects

Kinematics | | Kinematics | | dynamics of mechanical systems | | dynamics of mechanical systems | | Linear and angular momentum principles | | Linear and angular momentum principles | | Linearization about equilibrium | | Linearization about equilibrium | | Integral and derivative action | | Integral and derivative action | | lead and lag compensators | | lead and lag compensators | | Root-locus design methods | | Root-locus design methods | | Frequency-domain design methods | | Frequency-domain design methods | | multi-domain systems. | multi-domain systems.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV faculty introductions. This class serves as an introduction to mass transport in environmental flows, with emphasis given to river and lake systems. The class will cover the derivation and solutions to the differential form of mass conservation equations. Class topics to be covered will include: molecular and turbulent diffusion, boundary layers, dissolution, bed-water exchange, air-water exchange and particle transport. Includes audio/video content: AV faculty introductions. This class serves as an introduction to mass transport in environmental flows, with emphasis given to river and lake systems. The class will cover the derivation and solutions to the differential form of mass conservation equations. Class topics to be covered will include: molecular and turbulent diffusion, boundary layers, dissolution, bed-water exchange, air-water exchange and particle transport.Subjects

river systems | river systems | lake systems | lake systems | scalar transport in environmental flows | scalar transport in environmental flows | momentum transport in environmental flows | momentum transport in environmental flows | stratification in lakes | stratification in lakes | buoyancy-driven flows | buoyancy-driven flows | settling and coagulation | settling and coagulation | air-water exchange | air-water exchange | bed-water exchange | bed-water exchange | phase partitioning | phase partitioning | dissolution | dissolution | boundary layers | boundary layers | molecular diffusion | molecular diffusion | turbulent diffusion | turbulent diffusion | water transportation | water transportation | advection | advection | aquatic systems | aquatic systems | conservation of mass | conservation of mass | derivation | derivation | Diffusion | Diffusion | dispersion | dispersion | environmental flows | environmental flows | instantaneous point source | instantaneous point source | lakes | lakes | mass | mass | transport | transport | particle transport | particle transport | rivers | rivers | scaling | scaling | turbulence | turbulence | water flow | water flowLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy. The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy.Subjects

spectroscopy | spectroscopy | harmonic oscillators | harmonic oscillators | matrix | matrix | hamiltonian | hamiltonian | heisenberg | heisenberg | vibrating rotor | vibrating rotor | Born-Oppenheimer | Born-Oppenheimer | diatomics | diatomics | laser schemes | laser schemes | angular momentum | angular momentum | hund's cases | hund's cases | energy levels | energy levels | second-order effects | second-order effects | perturbations | perturbations | Wigner-Eckart | Wigner-Eckart | Rydberg-Klein-Rees | Rydberg-Klein-Rees | rigid rotor | rigid rotor | asymmetric rotor | asymmetric rotor | vibronic coupling | vibronic coupling | wavepackets | wavepacketsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course describes how electronic, optical and magnetic properties of materials originate from their electronic and molecular structure and how these properties can be designed for particular applications. It offers experimental exploration of the electronic, optical and magnetic properties of materials through hands-on experimentation and practical materials examples. This course describes how electronic, optical and magnetic properties of materials originate from their electronic and molecular structure and how these properties can be designed for particular applications. It offers experimental exploration of the electronic, optical and magnetic properties of materials through hands-on experimentation and practical materials examples.Subjects

electronic properites | electronic properites | optical properties | optical properties | magnetic properties | magnetic properties | materials | materials | Hamilton approach | Hamilton approach | Schrödinger’s Equation | Schrödinger’s Equation | mechanics | mechanics | quantum mechanics | quantum mechanics | spectral decomposition | spectral decomposition | symmetries | symmetries | angular momentum | angular momentum | periodic potentials | periodic potentials | band diagrams | band diagrams | Fermi | Fermi | Fermi-Dirac | Fermi-Dirac | p-n junction | p-n junction | light emitting diodes | light emitting diodes | wave optics | wave optics | electromagnetic waves | electromagnetic waves | magnetization | magnetization | semiconductor devices | semiconductor devices | Maxwell's equations | Maxwell's equations | photonic bands | photonic bandsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.012 Physics I: Classical Mechanics (MIT)

Description

This class is an introduction to classical mechanics for students who are comfortable with calculus. The main topics are: Vectors, Kinematics, Forces, Motion, Momentum, Energy, Angular Motion, Angular Momentum, Gravity, Planetary Motion, Moving Frames, and the Motion of Rigid Bodies.Subjects

elementary mechanics | Newton's laws | momentum | energy | angular momentum | rigid body motion | non-inertial systems | classical mechanicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata