Searching for motion : 1573 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

16.07 Dynamics (MIT) 16.07 Dynamics (MIT)

Description

Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics. Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics.

Subjects

Curvilinear motion | Curvilinear motion | carteian coordinates | carteian coordinates | dynamics | dynamics | equations of motion | equations of motion | intrinsic coordinates | intrinsic coordinates | coordinate systems | coordinate systems | work | work | energy | energy | conservative forces | conservative forces | potential energy | potential energy | linear impulse | linear impulse | mommentum | mommentum | angular impulse | angular impulse | relative motion | relative motion | rotating axes | rotating axes | translating axes | translating axes | Newton's second law | Newton's second law | inertial forces | inertial forces | accelerometers | accelerometers | Newtonian relativity | Newtonian relativity | gravitational attraction | gravitational attraction | 2D rigid body kinematics | 2D rigid body kinematics | conservation laws for systems of particles | conservation laws for systems of particles | 2D rigid body dynamics | 2D rigid body dynamics | pendulums | pendulums | 3D rigid body kinematics | 3D rigid body kinematics | 3d rigid body dynamics | 3d rigid body dynamics | inertia tensor | inertia tensor | gyroscopic motion | gyroscopic motion | torque-free motion | torque-free motion | spin stabilization | spin stabilization | variable mass systems | variable mass systems | rocket equation | rocket equation | central foce motion | central foce motion | Keppler's laws | Keppler's laws | orbits | orbits | orbit transfer | orbit transfer | vibration | vibration | spring mass systems | spring mass systems | forced vibration | forced vibration | isolation | isolation | coupled oscillators | coupled oscillators | normal modes | normal modes | wave propagation | wave propagation | cartesian coordinates | cartesian coordinates | momentum | momentum | central force motion | central force motion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

MAS.630 Affective Computing (MIT) MAS.630 Affective Computing (MIT)

Description

This course explores computing that relates to, arises from, or deliberately influences emotion. Topics include the interaction of emotion with cognition and perception, the role of emotion in human-computer interaction, the communication of human emotion via face, voice, physiology, and behavior, construction of computers that can recognize and respond appropriately to human emotional expressions, the development of computers that "have" emotion, and other areas of current research interest. Weekly reading, discussion, and a term project are also required. This course explores computing that relates to, arises from, or deliberately influences emotion. Topics include the interaction of emotion with cognition and perception, the role of emotion in human-computer interaction, the communication of human emotion via face, voice, physiology, and behavior, construction of computers that can recognize and respond appropriately to human emotional expressions, the development of computers that "have" emotion, and other areas of current research interest. Weekly reading, discussion, and a term project are also required.

Subjects

Neuroscience findings | Neuroscience findings | emotion | emotion | Emotion and perception | Emotion and perception | decision-making | decision-making | and creativity | and creativity | Emotion and learning | Emotion and learning | Physiology of emotion | Physiology of emotion | recognition by machines | recognition by machines | wearable systems | wearable systems | Measuring frustration/stress for usability feedback | Measuring frustration/stress for usability feedback | Responding to user emotion to reduce user frustration | Responding to user emotion to reduce user frustration | Inducing emotion | Inducing emotion | Robots/agents that "have" emotion | Robots/agents that "have" emotion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.561 Motion Based Design (MIT) 1.561 Motion Based Design (MIT)

Description

This course presents a rational basis for the preliminary design of motion-sensitive structures. Topics covered include: analytical and numerical techniques for establishing the optimal stiffness distribution, the role of damping in controlling motion, tuned mass dampers, base isolation systems, and active structural control. Examples illustrating the application of the motion-based design paradigm to building structures subjected to seismic excitation are discussed. This course presents a rational basis for the preliminary design of motion-sensitive structures. Topics covered include: analytical and numerical techniques for establishing the optimal stiffness distribution, the role of damping in controlling motion, tuned mass dampers, base isolation systems, and active structural control. Examples illustrating the application of the motion-based design paradigm to building structures subjected to seismic excitation are discussed.

Subjects

preliminary design | preliminary design | motion-sensitive structures | motion-sensitive structures | analytical techniques | analytical techniques | numerical techniques | numerical techniques | optimal stiffness distribution | optimal stiffness distribution | damping | damping | controlling motion | controlling motion | tuned mass dampers | tuned mass dampers | base isolation systems | base isolation systems | active structural control | active structural control | building structures | building structures | wind excitation | wind excitation | seismic excitation | seismic excitation | building design | building design | numerical analysis | numerical analysis | motion control | motion control | motion-based design | motion-based design | safety | safety | serviceability | serviceability | loadings | loadings | optimal stiffness | optimal stiffness | optimal damping | optimal damping | base isolation | base isolation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.321 Quantum Theory I (MIT) 8.321 Quantum Theory I (MIT)

Description

8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement. 8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement.

Subjects

eigenstates | eigenstates | uncertainty relation | uncertainty relation | observables | observables | eigenvalues | eigenvalues | probabilities of the results of measurement | probabilities of the results of measurement | transformation theory | transformation theory | equations of motion | equations of motion | constants of motion | constants of motion | Symmetry in quantum mechanics | Symmetry in quantum mechanics | representations of symmetry groups | representations of symmetry groups | Variational and perturbation approximations | Variational and perturbation approximations | Systems of identical particles and applications | Systems of identical particles and applications | Time-dependent perturbation theory | Time-dependent perturbation theory | Scattering theory: phase shifts | Scattering theory: phase shifts | Born approximation | Born approximation | The quantum theory of radiation | The quantum theory of radiation | Second quantization and many-body theory | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | Relativistic quantum mechanics of one electron | probability | probability | measurement | measurement | motion equations | motion equations | motion constants | motion constants | symmetry groups | symmetry groups | quantum mechanics | quantum mechanics | variational approximations | variational approximations | perturbation approximations | perturbation approximations | identical particles | identical particles | time-dependent perturbation theory | time-dependent perturbation theory | scattering theory | scattering theory | phase shifts | phase shifts | quantum theory of radiation | quantum theory of radiation | second quantization | second quantization | many-body theory | many-body theory | relativistic quantum mechanics | relativistic quantum mechanics | one electron | one electron | Hilbert spaces | Hilbert spaces | time evolution | time evolution | Schrodinger picture | Schrodinger picture | Heisenberg picture | Heisenberg picture | interaction picture | interaction picture | classical mechanics | classical mechanics | path integrals | path integrals | EM fields | EM fields | electromagnetic fields | electromagnetic fields | angular momentum | angular momentum | density operators | density operators | quantum measurement | quantum measurement | quantum statistics | quantum statistics | quantum dynamics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.322 Quantum Theory II (MIT) 8.322 Quantum Theory II (MIT)

Description

8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation. 8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.

Subjects

uncertainty relation | uncertainty relation | observables | observables | eigenstates | eigenstates | eigenvalues | eigenvalues | probabilities of the results of measurement | probabilities of the results of measurement | transformation theory | transformation theory | equations of motion | equations of motion | constants of motion | constants of motion | Symmetry in quantum mechanics | Symmetry in quantum mechanics | representations of symmetry groups | representations of symmetry groups | Variational and perturbation approximations | Variational and perturbation approximations | Systems of identical particles and applications | Systems of identical particles and applications | Time-dependent perturbation theory | Time-dependent perturbation theory | Scattering theory: phase shifts | Scattering theory: phase shifts | Born approximation | Born approximation | The quantum theory of radiation | The quantum theory of radiation | Second quantization and many-body theory | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | Relativistic quantum mechanics of one electron | probability | probability | measurement | measurement | motion equations | motion equations | motion constants | motion constants | symmetry groups | symmetry groups | quantum mechanics | quantum mechanics | variational approximations | variational approximations | perturbation approximations | perturbation approximations | identical particles | identical particles | time-dependent perturbation theory | time-dependent perturbation theory | scattering theory | scattering theory | phase shifts | phase shifts | quantum theory of radiation | quantum theory of radiation | second quantization | second quantization | many-body theory | many-body theory | relativistic quantum mechanics | relativistic quantum mechanics | one electron | one electron | quantization | quantization | EM radiation field | EM radiation field | electromagnetic radiation field | electromagnetic radiation field | adiabatic theorem | adiabatic theorem | Berry?s phase | Berry?s phase | many-particle systems | many-particle systems | Dirac equation | Dirac equation | Hilbert spaces | Hilbert spaces | time evolution | time evolution | Schrodinger picture | Schrodinger picture | Heisenberg picture | Heisenberg picture | interaction picture | interaction picture | classical mechanics | classical mechanics | path integrals | path integrals | EM fields | EM fields | electromagnetic fields | electromagnetic fields | angular momentum | angular momentum | density operators | density operators | quantum measurement | quantum measurement | quantum statistics | quantum statistics | quantum dynamics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01 Physics I (MIT) 8.01 Physics I (MIT)

Description

Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics. Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics.

Subjects

classical mechanics | classical mechanics | Space and time | Space and time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | experimental basis of Newton's laws | experimental basis of Newton's laws | particle dynamics | particle dynamics | universal gravitation | universal gravitation | collisions and conservation laws | collisions and conservation laws | work and potential energy | work and potential energy | vibrational motion | vibrational motion | conservative forces | conservative forces | central force motions | central force motions | inertial forces and non-inertial frames | inertial forces and non-inertial frames | rigid bodies and rotational dynamics | rigid bodies and rotational dynamics | forces and equilibrium | forces and equilibrium | space | space | time | time | space-time | space-time | planar motion | planar motion | forces | forces | equilibrium | equilibrium | Newton?s laws | Newton?s laws | collisions | collisions | conservation laws | conservation laws | work | work | potential energy | potential energy | inertial forces | inertial forces | non-inertial forces | non-inertial forces | rigid bodies | rigid bodies | rotational dynamics | rotational dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.07 Dynamics (MIT)

Description

Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics.

Subjects

Curvilinear motion | carteian coordinates | dynamics | equations of motion | intrinsic coordinates | coordinate systems | work | energy | conservative forces | potential energy | linear impulse | mommentum | angular impulse | relative motion | rotating axes | translating axes | Newton's second law | inertial forces | accelerometers | Newtonian relativity | gravitational attraction | 2D rigid body kinematics | conservation laws for systems of particles | 2D rigid body dynamics | pendulums | 3D rigid body kinematics | 3d rigid body dynamics | inertia tensor | gyroscopic motion | torque-free motion | spin stabilization | variable mass systems | rocket equation | central foce motion | Keppler's laws | orbits | orbit transfer | vibration | spring mass systems | forced vibration | isolation | coupled oscillators | normal modes | wave propagation | cartesian coordinates | momentum | central force motion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

MAS.630 Affective Computing (MIT)

Description

This course explores computing that relates to, arises from, or deliberately influences emotion. Topics include the interaction of emotion with cognition and perception, the role of emotion in human-computer interaction, the communication of human emotion via face, voice, physiology, and behavior, construction of computers that can recognize and respond appropriately to human emotional expressions, the development of computers that "have" emotion, and other areas of current research interest. Weekly reading, discussion, and a term project are also required.

Subjects

Neuroscience findings | emotion | Emotion and perception | decision-making | and creativity | Emotion and learning | Physiology of emotion | recognition by machines | wearable systems | Measuring frustration/stress for usability feedback | Responding to user emotion to reduce user frustration | Inducing emotion | Robots/agents that "have" emotion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.49 Maneuvering and Control of Surface and Underwater Vehicles (MIT) 13.49 Maneuvering and Control of Surface and Underwater Vehicles (MIT)

Description

This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles. This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles.

Subjects

Maneuvering | Maneuvering | motion | motion | surface and underwater vehicles | surface and underwater vehicles | Derivation of equations of motion | Derivation of equations of motion | hydrodynamic coefficients | hydrodynamic coefficients | Memory effects | Memory effects | Linear and nonlinear forms | Linear and nonlinear forms | Control surfaces | Control surfaces | modeling and design | modeling and design | Engine | Engine | propulsor | propulsor | transmission systems modeling | transmission systems modeling | simulation | simulation | Stability of motion | Stability of motion | multivariable automatic control | multivariable automatic control | Optimal control | Optimal control | Kalman filtering | Kalman filtering | loop transfer recovery | loop transfer recovery | autopilots for surface vehicles | autopilots for surface vehicles | towing in open seas | towing in open seas | remotely operated vehicles | remotely operated vehicles | 2.154 | 2.154

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.832 Underactuated Robotics (MIT) 6.832 Underactuated Robotics (MIT)

Description

Includes audio/video content: AV lectures. Robots today move far too conservatively, using control systems that attempt to maintain full control authority at all times. Humans and animals move much more aggressively by routinely executing motions which involve a loss of instantaneous control authority. Controlling nonlinear systems without complete control authority requires methods that can reason about and exploit the natural dynamics of our machines. This course discusses nonlinear dynamics and control of underactuated mechanical systems, with an emphasis on machine learning methods. Topics include nonlinear dynamics of passive robots (walkers, swimmers, flyers), motion planning, partial feedback linearization, energy-shaping control, analytical optimal control, reinforcement learning/a Includes audio/video content: AV lectures. Robots today move far too conservatively, using control systems that attempt to maintain full control authority at all times. Humans and animals move much more aggressively by routinely executing motions which involve a loss of instantaneous control authority. Controlling nonlinear systems without complete control authority requires methods that can reason about and exploit the natural dynamics of our machines. This course discusses nonlinear dynamics and control of underactuated mechanical systems, with an emphasis on machine learning methods. Topics include nonlinear dynamics of passive robots (walkers, swimmers, flyers), motion planning, partial feedback linearization, energy-shaping control, analytical optimal control, reinforcement learning/a

Subjects

underactuated robotics | underactuated robotics | actuated systems | actuated systems | nonlinear dynamics | nonlinear dynamics | simple pendulum | simple pendulum | optimal control | optimal control | double integrator | double integrator | quadratic regulator | quadratic regulator | Hamilton-Jacobi-Bellman sufficiency | Hamilton-Jacobi-Bellman sufficiency | minimum time control | minimum time control | acrobot | acrobot | cart-pole | cart-pole | partial feedback linearization | partial feedback linearization | energy shaping | energy shaping | policy search | policy search | open-loop optimal control | open-loop optimal control | trajectory stabilization | trajectory stabilization | iterative linear quadratic regulator | iterative linear quadratic regulator | differential dynamic programming | differential dynamic programming | walking models | walking models | rimless wheel | rimless wheel | compass gait | compass gait | kneed compass gait | kneed compass gait | feedback control | feedback control | running models | running models | spring-loaded inverted pendulum | spring-loaded inverted pendulum | Raibert hoppers | Raibert hoppers | motion planning | motion planning | randomized motion planning | randomized motion planning | rapidly-exploring randomized trees | rapidly-exploring randomized trees | probabilistic road maps | probabilistic road maps | feedback motion planning | feedback motion planning | planning with funnels | planning with funnels | linear quadratic regulator | linear quadratic regulator | function approximation | function approximation | state distribution dynamics | state distribution dynamics | state estimation | state estimation | stochastic optimal control | stochastic optimal control | aircraft | aircraft | swimming | swimming | flapping flight | flapping flight | randomized policy gradient | randomized policy gradient | model-free value methods | model-free value methods | temporarl difference learning | temporarl difference learning | Q-learning | Q-learning | actor-critic methods | actor-critic methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.154 Maneuvering and Control of Surface and Underwater Vehicles (13.49) (MIT) 2.154 Maneuvering and Control of Surface and Underwater Vehicles (13.49) (MIT)

Description

This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.49. In 2005, ocean engineering subjects became part of Co This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.49. In 2005, ocean engineering subjects became part of Co

Subjects

Maneuvering | Maneuvering | motion | motion | surface and underwater vehicles | surface and underwater vehicles | Derivation of equations of motion | Derivation of equations of motion | hydrodynamic coefficients | hydrodynamic coefficients | Memory effects | Memory effects | Linear and nonlinear forms | Linear and nonlinear forms | Control surfaces | Control surfaces | modeling and design | modeling and design | Engine | Engine | propulsor | propulsor | transmission systems modeling | transmission systems modeling | simulation | simulation | Stability of motion | Stability of motion | multivariable automatic control | multivariable automatic control | Optimal control | Optimal control | Kalman filtering | Kalman filtering | loop transfer recovery | loop transfer recovery | autopilots for surface vehicles | autopilots for surface vehicles | towing in open seas | towing in open seas | remotely operated vehicles | remotely operated vehicles

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01L Physics I: Classical Mechanics (MIT) 8.01L Physics I: Classical Mechanics (MIT)

Description

8.01L is an introductory mechanics course, which covers all the topics covered in 8.01T. The class meets throughout the fall, and continues throughout the Independent Activities Period (IAP). 8.01L is an introductory mechanics course, which covers all the topics covered in 8.01T. The class meets throughout the fall, and continues throughout the Independent Activities Period (IAP).

Subjects

Introductory classical mechanics | Introductory classical mechanics | space | space | time | time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | forces | forces | static equilibrium | static equilibrium | particle dynamics | particle dynamics | conservation of momentum | conservation of momentum | relative inertial frames | relative inertial frames | non-inertial force | non-inertial force | work | work | potential energy | potential energy | conservation of energy | conservation of energy | ideal gas | ideal gas | rigid bodies | rigid bodies | rotational dynamics | rotational dynamics | vibrational motion | vibrational motion | conservation of angular momentum | conservation of angular momentum | central force motions | central force motions | fluid mechanics | fluid mechanics | Technology-Enabled Active Learning | Technology-Enabled Active Learning

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01T Physics I (MIT) 8.01T Physics I (MIT)

Description

This freshman-level course is an introduction to classical mechanics. The subject is taught using the TEAL (Technology Enabled Active Learning) format which features small group interaction via table-top experiments utilizing laptops for data acquisition and problem solving workshops. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation. This freshman-level course is an introduction to classical mechanics. The subject is taught using the TEAL (Technology Enabled Active Learning) format which features small group interaction via table-top experiments utilizing laptops for data acquisition and problem solving workshops. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation.

Subjects

classical mechanics | classical mechanics | Space and time | Space and time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | forces and equilibrium | forces and equilibrium | experimental basis of Newton's laws | experimental basis of Newton's laws | particle dynamics | particle dynamics | universal gravitation | universal gravitation | collisions and conservation laws | collisions and conservation laws | work and potential energy | work and potential energy | vibrational motion | vibrational motion | conservative forces | conservative forces | inertial forces and non-inertial frames | inertial forces and non-inertial frames | central force motions | central force motions | rigid bodies | rigid bodies | rotational dynamics | rotational dynamics | rigid bodies and rotational dynamics | rigid bodies and rotational dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Health promotion Health promotion

Description

This is a module framework. It can be viewed online or downloaded as a zip file. As taught in Autumn Semester 2009 The 'Health Promotion' module is one of the core modules taught on the Masters in Public Health which is offered by the Division of Epidemiology and Public Health at The University of Nottingham. Suitable for study at: Masters level Dr Puja R Myles, School of Community Health Sciences - Epidemiology and Public Health Dr. Puja Myles is an Associate Professor of Health Protection and Epidemiology at the University of Nottingham. She trained as a dentist at Panjab University, India and worked as a dentist in India before completing her specialist training in Public Health in the East Midlands. She completed a doctorate in Epidemiology at the University of Nottingham. Sh This is a module framework. It can be viewed online or downloaded as a zip file. As taught in Autumn Semester 2009 The 'Health Promotion' module is one of the core modules taught on the Masters in Public Health which is offered by the Division of Epidemiology and Public Health at The University of Nottingham. Suitable for study at: Masters level Dr Puja R Myles, School of Community Health Sciences - Epidemiology and Public Health Dr. Puja Myles is an Associate Professor of Health Protection and Epidemiology at the University of Nottingham. She trained as a dentist at Panjab University, India and worked as a dentist in India before completing her specialist training in Public Health in the East Midlands. She completed a doctorate in Epidemiology at the University of Nottingham. Sh

Subjects

UNow | UNow | Epidemiology and public health | Epidemiology and public health | Concepts and theories of health promotion | Concepts and theories of health promotion | Approaches to health promotion | Approaches to health promotion | Globalisation and health promotion | Globalisation and health promotion | UKOER | UKOER

License

Except for third party materials (materials owned by someone other than The University of Nottingham) and where otherwise indicated, the copyright in the content provided in this resource is owned by The University of Nottingham and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike UK 2.0 Licence (BY-NC-SA) Except for third party materials (materials owned by someone other than The University of Nottingham) and where otherwise indicated, the copyright in the content provided in this resource is owned by The University of Nottingham and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike UK 2.0 Licence (BY-NC-SA)

Site sourced from

http://unow.nottingham.ac.uk/rss.ashx

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.373 Somatosensory and Motor Systems (MIT) 9.373 Somatosensory and Motor Systems (MIT)

Description

General principles of motor control in biological systems. Structure and function of sensory receptors. Muscle structure and reflex arcs. Spinal cord. Locomotion. Oculomotor control. Cerebellar structure and function. Motor thalamus. Basal ganglia. Somatosensory cortex: maps and neuronal properties. Cortical plasticity. Motor psychophysics and computational approaches to motor control, and motor planning. General principles of motor control in biological systems. Structure and function of sensory receptors. Muscle structure and reflex arcs. Spinal cord. Locomotion. Oculomotor control. Cerebellar structure and function. Motor thalamus. Basal ganglia. Somatosensory cortex: maps and neuronal properties. Cortical plasticity. Motor psychophysics and computational approaches to motor control, and motor planning.

Subjects

locomotion | locomotion | motor control | motor control | biological systems | biological systems | Structure | Structure | function | function | Muscle structure | Muscle structure | reflex | reflex | Spinal cord | Spinal cord | Oculomotor control | Oculomotor control | Cerebellar structure | Cerebellar structure | Motor thalamus | Motor thalamus | Basal ganglia | Basal ganglia | Somatosensory cortex | Somatosensory cortex | Cortical plasticity | Cortical plasticity | Motor psychophysics | Motor psychophysics | motor planning | motor planning | Locomotion | Locomotion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.620J Classical Mechanics: A Computational Approach (MIT) 12.620J Classical Mechanics: A Computational Approach (MIT)

Description

12.620J covers the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. The course uses computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration.The following topics are covered: the Lagrangian formulation, action, variational principles, and equations of motion, Hamilton's principle, conserved quantities, rigid bodies and tops, Hamiltonian formulation and canonical equations, surfaces of section, chaos, canonical transformations and generating functions, Liouville's theorem and Poincaré integral invariants, Poincaré-Birkhoff and KAM theorems, invariant curves and cantori, nonlinear resonances, resonance ov 12.620J covers the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. The course uses computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration.The following topics are covered: the Lagrangian formulation, action, variational principles, and equations of motion, Hamilton's principle, conserved quantities, rigid bodies and tops, Hamiltonian formulation and canonical equations, surfaces of section, chaos, canonical transformations and generating functions, Liouville's theorem and Poincaré integral invariants, Poincaré-Birkhoff and KAM theorems, invariant curves and cantori, nonlinear resonances, resonance ov

Subjects

classical mechanics | classical mechanics | phase space | phase space | computation | computation | Lagrangian formulation | Lagrangian formulation | action | action | variational principles | variational principles | equations of motion | equations of motion | Hamilton's principle | Hamilton's principle | conserved quantities | conserved quantities | rigid bodies and tops | rigid bodies and tops | Hamiltonian formulation | Hamiltonian formulation | canonical equations | canonical equations | surfaces of section | surfaces of section | chaos | chaos | canonical transformations | canonical transformations | generating functions | generating functions | Liouville's theorem | Liouville's theorem | Poincar? integral invariants | Poincar? integral invariants | Poincar?-Birkhoff | Poincar?-Birkhoff | KAM theorem | KAM theorem | invariant curves | invariant curves | cantori | cantori | nonlinear resonances | nonlinear resonances | resonance overlap | resonance overlap | transition to chaos | transition to chaos | chaotic motion | chaotic motion | 12.620 | 12.620 | 6.946 | 6.946 | 8.351 | 8.351

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Physics of Atmospheres and Oceans (MIT) 12.003 Physics of Atmospheres and Oceans (MIT)

Description

The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data. The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.820 Turbulence in Geophysical Systems (MIT) 12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.

Subjects

phenomena | theory | and modeling of turbulence | phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal waves

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.820 Turbulence in Geophysical Systems (MIT) 12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.

Subjects

phenomena | theory | and modeling of turbulence | phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal waves

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.641 Electromagnetic Fields, Forces, and Motion (MIT) 6.641 Electromagnetic Fields, Forces, and Motion (MIT)

Description

6.641 examines electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Topics covered include: electromagnetic forces, force densities, and stress tensors, including magnetization and polarization; thermodynamics of electromagnetic fields, equations of motion, and energy conservation; applications to synchronous, induction, and commutator machines; sensors and transducers; microelectromechanical systems; propagation and stability of electromechanical waves; and charge transport phenomena.Technical RequirementsRealOne™ Player software is required to run the .rm files found on this course site.RealOne™ is a trademark or a registered trademark of RealNetworks, Inc. 6.641 examines electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Topics covered include: electromagnetic forces, force densities, and stress tensors, including magnetization and polarization; thermodynamics of electromagnetic fields, equations of motion, and energy conservation; applications to synchronous, induction, and commutator machines; sensors and transducers; microelectromechanical systems; propagation and stability of electromechanical waves; and charge transport phenomena.Technical RequirementsRealOne™ Player software is required to run the .rm files found on this course site.RealOne™ is a trademark or a registered trademark of RealNetworks, Inc.

Subjects

electromagnetic | electromagnetic | electromagnetic field | electromagnetic field | forces | forces | motion | motion | electric | electric | magnetic | magnetic | quasistatic | quasistatic | Maxwell's equations | Maxwell's equations | dielectric | dielectric | conduction | conduction | magnetization | magnetization | boundary value problems | boundary value problems | force densities | force densities | stress tensors | stress tensors | polarization | polarization | thermodynamics | thermodynamics | equations of motion | equations of motion | energy conservation | energy conservation | synchronous | synchronous | induction | induction | commutator machines | commutator machines | sensors | sensors | transducers | transducers | microelectromechanical systems | microelectromechanical systems | electromechanical waves | electromechanical waves | charge transport phenomena | charge transport phenomena

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.820 Turbulence in Geophysical Systems (MIT) 12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.

Subjects

Phenomena | theory | and modeling of turbulence | Phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal waves | turbulence flows | turbulence flows | earth | earth | energetics | energetics | isotropic homogeneous 2D turbulence | isotropic homogeneous 2D turbulence | isotropic homogeneous 3d flows | isotropic homogeneous 3d flows | quasi-geostrophic turbulence | quasi-geostrophic turbulence | parameterizing turbulence | parameterizing turbulence | wave dynamics | wave dynamics | turbulent dispersion | turbulent dispersion | coherent structures | coherent structures

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Neuroscience and Behavior (MIT) 9.01 Neuroscience and Behavior (MIT)

Description

Relation of structure and function at various levels of neuronal integration. Topics include: functional neuroanatomy and neurophysiology, sensory and motor systems, centrally programmed behavior, sensory systems, sleep and dreaming, motivation and reward, emotional displays of various types, "higher functions" and the neocortex, and neural processes in learning and memory. In order to improve writing skills in describing experiments and reviewing journal publications in neuroscience, students are required to complete four homework assignments and one literature review with revision. Technical RequirementsMedia player software, such as Quicktime Player, RealOne Player, or Windows Media Player, is required to run the .mp3 files found on this cou Relation of structure and function at various levels of neuronal integration. Topics include: functional neuroanatomy and neurophysiology, sensory and motor systems, centrally programmed behavior, sensory systems, sleep and dreaming, motivation and reward, emotional displays of various types, "higher functions" and the neocortex, and neural processes in learning and memory. In order to improve writing skills in describing experiments and reviewing journal publications in neuroscience, students are required to complete four homework assignments and one literature review with revision. Technical RequirementsMedia player software, such as Quicktime Player, RealOne Player, or Windows Media Player, is required to run the .mp3 files found on this cou

Subjects

functional neuroanatomy | functional neurophysiology | motor systems | centrally programmed behavior | sensory systems | sleep | dreaming | motivation | reward | emotional displays | higher functions" | neocortex | neural processes in learning and memory | functional neuroanatomy | functional neurophysiology | motor systems | centrally programmed behavior | sensory systems | sleep | dreaming | motivation | reward | emotional displays | higher functions" | neocortex | neural processes in learning and memory | functional neuroanatomy | functional neuroanatomy | functional neurophysiology | functional neurophysiology | motor systems | motor systems | centrally programmed behavior | centrally programmed behavior | sensory systems | sensory systems | sleep | sleep | dreaming | dreaming | motivation | motivation | reward | reward | emotional displays | emotional displays | higher functions | higher functions | neocortex | neocortex | neural processes in learning and memory | neural processes in learning and memory | Neurobehavior | Neurobehavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.641 Electromagnetic Fields, Forces, and Motion (MIT) 6.641 Electromagnetic Fields, Forces, and Motion (MIT)

Description

Includes audio/video content: AV faculty introductions. This course examines electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Topics covered include: electromagnetic forces, force densities, and stress tensors, including magnetization and polarization; thermodynamics of electromagnetic fields, equations of motion, and energy conservation; applications to synchronous, induction, and commutator machines; sensors and transducers; microelectromechanical systems; propagation and stability of electromechanical waves; and charge transport phenomena. Acknowledgments The instructor would like to thank Thomas Larsen and Matthew Pegler for transcribing into LaTeX the homework problems, homework solutions, and Includes audio/video content: AV faculty introductions. This course examines electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Topics covered include: electromagnetic forces, force densities, and stress tensors, including magnetization and polarization; thermodynamics of electromagnetic fields, equations of motion, and energy conservation; applications to synchronous, induction, and commutator machines; sensors and transducers; microelectromechanical systems; propagation and stability of electromechanical waves; and charge transport phenomena. Acknowledgments The instructor would like to thank Thomas Larsen and Matthew Pegler for transcribing into LaTeX the homework problems, homework solutions, and

Subjects

electromagnetic | electromagnetic | electromagnetic field | electromagnetic field | forces | forces | motion | motion | electric | electric | magnetic | magnetic | quasistatic | quasistatic | Maxwell's equations | Maxwell's equations | dielectric | dielectric | conduction | conduction | magnetization | magnetization | boundary value problems | boundary value problems | force densities | force densities | stress tensors | stress tensors | polarization | polarization | thermodynamics | thermodynamics | equations of motion | equations of motion | energy conservation | energy conservation | synchronous | synchronous | induction | induction | commutator machines | commutator machines | sensors | sensors | transducers | transducers | microelectromechanical systems | microelectromechanical systems | electromechanical waves | electromechanical waves | charge transport phenomena | charge transport phenomena

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Atmosphere, Ocean and Climate Dynamics (MIT) 12.003 Atmosphere, Ocean and Climate Dynamics (MIT)

Description

Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall. Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.003J Dynamics and Control I (MIT) 2.003J Dynamics and Control I (MIT)

Description

Introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Kinematics. Force-momentum formulation for systems of particles and rigid bodies in planar motion. Work-energy concepts. Virtual displacements and virtual work. Lagrange's equations for systems of particles and rigid bodies in planar motion. Linearization of equations of motion. Linear stability analysis of mechanical systems. Free and forced vibration of linear multi-degree of freedom models of mechanical systems; matrix eigenvalue problems. Introduction to numerical methods and MATLAB® to solve dynamics and vibrations problems. Introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Kinematics. Force-momentum formulation for systems of particles and rigid bodies in planar motion. Work-energy concepts. Virtual displacements and virtual work. Lagrange's equations for systems of particles and rigid bodies in planar motion. Linearization of equations of motion. Linear stability analysis of mechanical systems. Free and forced vibration of linear multi-degree of freedom models of mechanical systems; matrix eigenvalue problems. Introduction to numerical methods and MATLAB® to solve dynamics and vibrations problems.

Subjects

dynamics and vibrations of lumped-parameter models | dynamics and vibrations of lumped-parameter models | mechanical systems | mechanical systems | Kinematics | Kinematics | Force-momentum formulation | Force-momentum formulation | systems of particles | systems of particles | rigid bodies in planar motion | rigid bodies in planar motion | Work-energy concepts | Work-energy concepts | Virtual displacements | Virtual displacements | virtual work | virtual work | Lagrange's equations | Lagrange's equations | Linearization of equations of motion | Linearization of equations of motion | Linear stability analysis | Linear stability analysis | Free vibration | Free vibration | forced vibration | forced vibration | linear multi-degree of freedom models | linear multi-degree of freedom models | matrix eigenvalue problems | matrix eigenvalue problems | numerical methods | numerical methods | MATLAB | MATLAB

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata