Searching for motions : 58 results found | RSS Feed for this search

12.333 Atmospheric and Ocean Circulations (MIT) 12.333 Atmospheric and Ocean Circulations (MIT)

Description

In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss. In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.Subjects

atmospheric and oceanic phenomena | atmospheric and oceanic phenomena | observations | observations | theoretical interpretations | theoretical interpretations | monsoons | monsoons | El Ni?o | El Ni?o | planetary waves | planetary waves | atmospheric synoptic eddies and fronts | atmospheric synoptic eddies and fronts | gulf stream rings | gulf stream rings | hurricanes | hurricanes | surface and internal gravity waves | surface and internal gravity waves | tides | tides | shallow water gravity waves | shallow water gravity waves | deep water gravity waves | deep water gravity waves | internal gravity waves | internal gravity waves | large-scale motions | large-scale motions | rotating earth | rotating earth | Rossby waves | Rossby waves | planetary scale motions | planetary scale motions | baroclinic instability | baroclinic instability | midlatitude storms | midlatitude storms | equatorial atmosphere | equatorial atmosphere | equatorial ocean | equatorial ocean | southern oscillation | southern oscillation | tropical cyclones | tropical cyclones | typhoons | typhoonsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in Geophysical Systems (MIT) 12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.Subjects

phenomena | theory | and modeling of turbulence | phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in Geophysical Systems (MIT) 12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.Subjects

phenomena | theory | and modeling of turbulence | phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in Geophysical Systems (MIT) 12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.Subjects

Phenomena | theory | and modeling of turbulence | Phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal waves | turbulence flows | turbulence flows | earth | earth | energetics | energetics | isotropic homogeneous 2D turbulence | isotropic homogeneous 2D turbulence | isotropic homogeneous 3d flows | isotropic homogeneous 3d flows | quasi-geostrophic turbulence | quasi-geostrophic turbulence | parameterizing turbulence | parameterizing turbulence | wave dynamics | wave dynamics | turbulent dispersion | turbulent dispersion | coherent structures | coherent structuresLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, boundary layer turbulence, internal waves, two dimensional turbulence, quasi-geostrophic turbulence, and macrotrubulence in the ocean and atmosphere. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, boundary layer turbulence, internal waves, two dimensional turbulence, quasi-geostrophic turbulence, and macrotrubulence in the ocean and atmosphere.Subjects

phenomena | theory | and modeling of turbulence | phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, quasi-geostrophic turbulence, shallow water turbulence, baroclinic turbulence, macroturbulence in the ocean and atmosphere. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, quasi-geostrophic turbulence, shallow water turbulence, baroclinic turbulence, macroturbulence in the ocean and atmosphere.Subjects

phenomena | phenomena | theory | theory | and modeling of turbulence | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.032 Dynamics (MIT) 2.032 Dynamics (MIT)

Description

This course reviews momentum and energy principles, and then covers the following topics: Hamilton's principle and Lagrange's equations; three-dimensional kinematics and dynamics of rigid bodies; steady motions and small deviations therefrom, gyroscopic effects, and causes of instability; free and forced vibrations of lumped-parameter and continuous systems; nonlinear oscillations and the phase plane; nonholonomic systems; and an introduction to wave propagation in continuous systems. This course was originally developed by Professor T. Akylas. This course reviews momentum and energy principles, and then covers the following topics: Hamilton's principle and Lagrange's equations; three-dimensional kinematics and dynamics of rigid bodies; steady motions and small deviations therefrom, gyroscopic effects, and causes of instability; free and forced vibrations of lumped-parameter and continuous systems; nonlinear oscillations and the phase plane; nonholonomic systems; and an introduction to wave propagation in continuous systems. This course was originally developed by Professor T. Akylas.Subjects

motion | motion | momentum | momentum | work-energy principle | work-energy principle | degrees of freedom | degrees of freedom | Lagrange's equations | Lagrange's equations | D'Alembert's principle | D'Alembert's principle | Hamilton's principle | Hamilton's principle | gyroscope | gyroscope | gyroscopic effect | gyroscopic effect | steady motions | steady motions | nature of small deviations | nature of small deviations | natural modes | natural modes | natural frequencies for continuous and lumped parameter systems | natural frequencies for continuous and lumped parameter systems | mode shapes | mode shapes | forced vibrations | forced vibrations | dynamic stability theory | dynamic stability theory | instability | instabilityLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Observational physical oceanography includes topics such as the physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions. Observational physical oceanography includes topics such as the physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions.Subjects

Physical description of the sea | Physical description of the sea | physical properties of seawater | physical properties of seawater | methods | methods | measurements | measurements | wind-driven ocean circulation | wind-driven ocean circulation | abyssal ocean circulation | abyssal ocean circulation | boundary processes | boundary processes | wave motions | wave motionsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The aim of this course is to introduce the principles of the Global Positioning System and to demonstrate its application to various aspects of Earth Sciences. The specific content of the course depends each year on the interests of the students in the class. In some cases, the class interests are towards the geophysical applications of GPS and we concentrate on high precision(millimeter level) positioning on regional and global scales. In other cases, the interests have been more toward engineering applications of kinematic positioning with GPS in which case the concentration is on positioning with slightly less accuracy but being able to do so for a moving object. In all cases, we concentrate on the fundamen The aim of this course is to introduce the principles of the Global Positioning System and to demonstrate its application to various aspects of Earth Sciences. The specific content of the course depends each year on the interests of the students in the class. In some cases, the class interests are towards the geophysical applications of GPS and we concentrate on high precision(millimeter level) positioning on regional and global scales. In other cases, the interests have been more toward engineering applications of kinematic positioning with GPS in which case the concentration is on positioning with slightly less accuracy but being able to do so for a moving object. In all cases, we concentrate on the fundamenSubjects

Global Positioning System | Global Positioning System | Earth Sciences | Earth Sciences | geophysical applications | geophysical applications | GPS | GPS | engineering applications | engineering applications | kinematic positioning | kinematic positioning | precision | precision | accuracy | accuracy | moving objects | moving objects | coordinate | coordinate | time | time | systems | systems | satellite | satellite | geodetic | geodetic | orbital | orbital | motions | motions | pseudo ranges | pseudo ranges | carrier phases | carrier phases | stochastic | stochastic | mathematics | mathematics | models | models | data | data | analysis | analysis | estimation | estimationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability. This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability.Subjects

geophysical wave motion | geophysical wave motion | rotating | stratified | and rotating-stratified fluids | rotating | stratified | and rotating-stratified fluids | general wave concepts | general wave concepts | phase | phase | group velocity | group velocity | dynamics and kinematics of gravity waves | dynamics and kinematics of gravity waves | dispersion | dispersion | energy flux | energy flux | initial value problems | initial value problems | internal and inertial waves | internal and inertial waves | Kelvin | Kelvin | Poincare | Poincare | and Rossby waves | and Rossby waves | homogeneous and stratified fluids | homogeneous and stratified fluids | Laplace tidal equations | Laplace tidal equations | equatorial waves | equatorial waves | resonant interactions | resonant interactions | potential vorticity | potential vorticity | wave-mean flow interactions | wave-mean flow interactions | instability | instability | 12. Kelvin | Poincare | and Rossby waves | 12. Kelvin | Poincare | and Rossby waves | Kelvin | Poincare | and Rossby waves | Kelvin | Poincare | and Rossby waves | internal gravity waves | internal gravity waves | surface gravity waves | surface gravity waves | rotation | rotation | large-scale hydrostatic motions | large-scale hydrostatic motions | vertical structure equation | vertical structure equation | equatorial ?-plane | equatorial ?-plane | Stratified Quasi-Geostrophic Motion | Stratified Quasi-Geostrophic MotionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataIf I could just stop loving you: Anti-love drugs and the ethics of a chemical break-up

Description

Emotional pain and difficulty in relationships is potentially dangerous and destructive. In this talk, I explore some of the potential uses and misuses of anti-love biotechnology from a scientific and ethical perspective. "Love hurts" - as the saying goes - and a certain degree of pain and difficulty in intimate relationships is unavoidable. Sometimes it may even be beneficial, since, as it is often argued, some types (and amounts) of suffering can lead to personal growth, self-discovery, and a range of other essential components of a life well-lived. But other times, love is downright dangerous. Either it can trap a person in a cycle of violence, as in some domestic abuse cases, or it can prevent a person from moving on with her life or forming healthier relationships. The idea of an Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129191/audio.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.333 Atmospheric and Ocean Circulations (MIT)

Description

In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.Subjects

atmospheric and oceanic phenomena | observations | theoretical interpretations | monsoons | El Ni?o | planetary waves | atmospheric synoptic eddies and fronts | gulf stream rings | hurricanes | surface and internal gravity waves | tides | shallow water gravity waves | deep water gravity waves | internal gravity waves | large-scale motions | rotating earth | Rossby waves | planetary scale motions | baroclinic instability | midlatitude storms | equatorial atmosphere | equatorial ocean | southern oscillation | tropical cyclones | typhoonsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.01L Physics I: Classical Mechanics (MIT) 8.01L Physics I: Classical Mechanics (MIT)

Description

8.01L is an introductory mechanics course, which covers all the topics covered in 8.01T. The class meets throughout the fall, and continues throughout the Independent Activities Period (IAP). 8.01L is an introductory mechanics course, which covers all the topics covered in 8.01T. The class meets throughout the fall, and continues throughout the Independent Activities Period (IAP).Subjects

Introductory classical mechanics | Introductory classical mechanics | space | space | time | time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | forces | forces | static equilibrium | static equilibrium | particle dynamics | particle dynamics | conservation of momentum | conservation of momentum | relative inertial frames | relative inertial frames | non-inertial force | non-inertial force | work | work | potential energy | potential energy | conservation of energy | conservation of energy | ideal gas | ideal gas | rigid bodies | rigid bodies | rotational dynamics | rotational dynamics | vibrational motion | vibrational motion | conservation of angular momentum | conservation of angular momentum | central force motions | central force motions | fluid mechanics | fluid mechanics | Technology-Enabled Active Learning | Technology-Enabled Active LearningLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.Subjects

Phenomena | theory | and modeling of turbulence | oceans | atmosphere | fine structure | planetary scale motions | homogeneous flows | geostrophic motions | shear flows | convection | boundary layers | stably stratified flows | internal waves | turbulence flows | earth | energetics | isotropic homogeneous 2D turbulence | isotropic homogeneous 3d flows | quasi-geostrophic turbulence | parameterizing turbulence | wave dynamics | turbulent dispersion | coherent structuresLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.01T Physics I (MIT) 8.01T Physics I (MIT)

Description

This freshman-level course is an introduction to classical mechanics. The subject is taught using the TEAL (Technology Enabled Active Learning) format which features small group interaction via table-top experiments utilizing laptops for data acquisition and problem solving workshops. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation. This freshman-level course is an introduction to classical mechanics. The subject is taught using the TEAL (Technology Enabled Active Learning) format which features small group interaction via table-top experiments utilizing laptops for data acquisition and problem solving workshops. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation.Subjects

classical mechanics | classical mechanics | Space and time | Space and time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | forces and equilibrium | forces and equilibrium | experimental basis of Newton's laws | experimental basis of Newton's laws | particle dynamics | particle dynamics | universal gravitation | universal gravitation | collisions and conservation laws | collisions and conservation laws | work and potential energy | work and potential energy | vibrational motion | vibrational motion | conservative forces | conservative forces | inertial forces and non-inertial frames | inertial forces and non-inertial frames | central force motions | central force motions | rigid bodies | rigid bodies | rotational dynamics | rotational dynamics | rigid bodies and rotational dynamics | rigid bodies and rotational dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course begins by introducing students to aspects of fluid dynamics relevant to transport and deposition of particulate sedimentary materials. Emphasis is on the structure of turbulent shear flows and the forces exerted by fluid motions on bed of loosed sediment. With fluid dynamics as background, the course deals with sediment movement as bed load and suspended load, and with the geometry, kinematics, and dynamics of ripple and dune bed forms. The course concludes with basic material on the styles of current-generated primary sedimentary structures, with emphasis on cross stratification. This course begins by introducing students to aspects of fluid dynamics relevant to transport and deposition of particulate sedimentary materials. Emphasis is on the structure of turbulent shear flows and the forces exerted by fluid motions on bed of loosed sediment. With fluid dynamics as background, the course deals with sediment movement as bed load and suspended load, and with the geometry, kinematics, and dynamics of ripple and dune bed forms. The course concludes with basic material on the styles of current-generated primary sedimentary structures, with emphasis on cross stratification.Subjects

geology | geology | rocks | rocks | sedimentary | sedimentary | fluid motions | fluid motions | sediment transport | sediment transport | sedimentary structures | sedimentary structures | viscosity | viscosity | diffusion | diffusion | turbulence | turbulence | boundary layers | boundary layers | laminar flow | laminar flow | stress | stress | shear stress | shear stress | oscillatory-flow | oscillatory-flow | combined-flow | combined-flow | wind ripples | wind ripples | Eolian dunes | Eolian dunes | cross stratification | cross stratification | planar lamination | planar laminationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.01 Physics I (MIT) 8.01 Physics I (MIT)

Description

Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics. Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics.Subjects

classical mechanics | classical mechanics | Space and time | Space and time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | experimental basis of Newton's laws | experimental basis of Newton's laws | particle dynamics | particle dynamics | universal gravitation | universal gravitation | collisions and conservation laws | collisions and conservation laws | work and potential energy | work and potential energy | vibrational motion | vibrational motion | conservative forces | conservative forces | central force motions | central force motions | inertial forces and non-inertial frames | inertial forces and non-inertial frames | rigid bodies and rotational dynamics | rigid bodies and rotational dynamics | forces and equilibrium | forces and equilibrium | space | space | time | time | space-time | space-time | planar motion | planar motion | forces | forces | equilibrium | equilibrium | Newton?s laws | Newton?s laws | collisions | collisions | conservation laws | conservation laws | work | work | potential energy | potential energy | inertial forces | inertial forces | non-inertial forces | non-inertial forces | rigid bodies | rigid bodies | rotational dynamics | rotational dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.250 Evolutionary Psychology (MIT) 9.250 Evolutionary Psychology (MIT)

Description

Current research on the evolution and development of cognition and affect, including intuitive physics, biology, and psychology, language, emotions, sexuality, and social relations. Current research on the evolution and development of cognition and affect, including intuitive physics, biology, and psychology, language, emotions, sexuality, and social relations.Subjects

evolution | evolution | development of cognition | development of cognition | affect | affect | intuitive physics | intuitive physics | biology | biology | psychology | psychology | language | language | emotions | emotions | sexuality | sexuality | social relations | social relationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The aim of this course is to introduce the principles of the Global Positioning System and to demonstrate its application to various aspects of Earth Sciences. The specific content of the course depends each year on the interests of the students in the class. In some cases, the class interests are towards the geophysical applications of GPS and we concentrate on high precision (millimeter level) positioning on regional and global scales. In other cases, the interests have been more toward engineering applications of kinematic positioning with GPS in which case the concentration is on positioning with slightly less accuracy but being able to do so for a moving object. In all cases, we concentrate on the fundamental issues so that students should gain an understanding of the basic limitation The aim of this course is to introduce the principles of the Global Positioning System and to demonstrate its application to various aspects of Earth Sciences. The specific content of the course depends each year on the interests of the students in the class. In some cases, the class interests are towards the geophysical applications of GPS and we concentrate on high precision (millimeter level) positioning on regional and global scales. In other cases, the interests have been more toward engineering applications of kinematic positioning with GPS in which case the concentration is on positioning with slightly less accuracy but being able to do so for a moving object. In all cases, we concentrate on the fundamental issues so that students should gain an understanding of the basic limitationSubjects

Global Positioning System (GPS) | Global Positioning System (GPS) | kinematic positioning | kinematic positioning | geodetic systems | geodetic systems | satellite orbital motions | satellite orbital motionsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.250 Evolutionary Psychology (MIT) 9.250 Evolutionary Psychology (MIT)

Description

Current research on the evolution and development of cognition and affect, including intuitive physics, biology, and psychology, language, emotions, sexuality, and social relations. Current research on the evolution and development of cognition and affect, including intuitive physics, biology, and psychology, language, emotions, sexuality, and social relations.Subjects

evolution | evolution | development of cognition | development of cognition | affect | affect | intuitive physics | intuitive physics | biology | biology | psychology | psychology | language | language | emotions | emotions | sexuality | sexuality | social relations | social relationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.Subjects

phenomena | theory | and modeling of turbulence | oceans | atmosphere | fine structure | planetary scale motions | homogeneous flows | geostrophic motions | shear flows | convection | boundary layers | stably stratified flows | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The aim of this course is to introduce the principles of the Global Positioning System and to demonstrate its application to various aspects of Earth Sciences. The specific content of the course depends each year on the interests of the students in the class. In some cases, the class interests are towards the geophysical applications of GPS and we concentrate on high precision (millimeter level) positioning on regional and global scales. In other cases, the interests have been more toward engineering applications of kinematic positioning with GPS in which case the concentration is on positioning with slightly less accuracy but being able to do so for a moving object. In all cases, we concentrate on the fundamental issues so that students should gain an understanding of the basic limitation The aim of this course is to introduce the principles of the Global Positioning System and to demonstrate its application to various aspects of Earth Sciences. The specific content of the course depends each year on the interests of the students in the class. In some cases, the class interests are towards the geophysical applications of GPS and we concentrate on high precision (millimeter level) positioning on regional and global scales. In other cases, the interests have been more toward engineering applications of kinematic positioning with GPS in which case the concentration is on positioning with slightly less accuracy but being able to do so for a moving object. In all cases, we concentrate on the fundamental issues so that students should gain an understanding of the basic limitationSubjects

Global Positioning System (GPS) | Global Positioning System (GPS) | kinematic positioning | kinematic positioning | geodetic systems | geodetic systems | satellite orbital motions | satellite orbital motionsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in the Ocean and Atmosphere (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, boundary layer turbulence, internal waves, two dimensional turbulence, quasi-geostrophic turbulence, and macrotrubulence in the ocean and atmosphere.Subjects

phenomena | theory | and modeling of turbulence | oceans | atmosphere | fine structure | planetary scale motions | homogeneous flows | geostrophic motions | shear flows | convection | boundary layers | stably stratified flows | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in the Ocean and Atmosphere (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, quasi-geostrophic turbulence, shallow water turbulence, baroclinic turbulence, macroturbulence in the ocean and atmosphere.Subjects

phenomena | theory | and modeling of turbulence | oceans | atmosphere | fine structure | planetary scale motions | homogeneous flows | geostrophic motions | shear flows | convection | boundary layers | stably stratified flows | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.Subjects

phenomena | theory | and modeling of turbulence | oceans | atmosphere | fine structure | planetary scale motions | homogeneous flows | geostrophic motions | shear flows | convection | boundary layers | stably stratified flows | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata